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Abstract—Frequent value locality is a type of locality based
on the observation that a small set of values is accessed very
frequently. Several works have exploited it to construct different
architectural schemes, such as memory and cache designs or
bus and network optimizations. Although these previous works
consider different criteria to establish what is a frequent value
and what is not, they assume that these frequent values are
constant for the whole program, or they analyze the dynamic
properties at a granularity too high to take advantage of them.
In this paper, we observe that the frequent values change
dynamically during the program execution, presenting what we
call temporal frequent value locality, and its potential depends on
the granularity of the observation. Furthermore, we instrument
and analyze the dynamic patterns of the SPEC2006 benchmarks
using two realistic schemes, and we compare them with other
classical frequent value locality proposals. The results show that
temporal frequent value locality has the potential to be used
successfully in architectural optimizations. We also simulate our
scheme for main memory bandwidth compression, achieving an
increase of 63% (up to 285%) in the effective bandwidth, the
double of the best tested state-of-the-art compression algorithm.

Index Terms—Frequent Value Locality, Compression

I. INTRODUCTION

Frequent Value Locality [1] (FVL) is a type of value locality
that refers to the fact that a small number of values are
highly repeated in memory accesses. This observation can be
leveraged to optimize the cache energy efficiency [2], to design
compressed data caches [3] and value-centric caches [1], or for
bus encoding techniques [4]. In this work, we will focus on
the analysis of the dynamic characteristics of FVL (Temporal
Frequent Value Locality - TFVL ) for memory operations to
open new ways for designing optimizations based on this type
of locality.

The basis to leveraging FVL for architectural optimizations
is the fact that some of the values are much more common
than others, and therefore, encoding them with a small number
of bits improves the overall efficiency. As a consequence, by
applying these techniques, we can save space to encode values,
reduce energy consumption, reduce bus traffic, etc.

A program has high frequent value locality if there are some
few values that are very common in memory accesses. In case
the most accessed values do not represent an important part
of the memory accesses, we say that the program has low
frequent value locality. In this paper, we call frequent values
to the most accessed values in the program, independently if
the program present high or low frequent value locality. For
example, the 8 most frequent values may represent the most of
the memory accesses in a benchmark with high frequent value

locality (e.g. 80%), but they may be a small portion (e.g. 15%)
in a benchmark with low frequent value locality. For analyzing
temporal properties, we also consider frequent values in the
scope of small chunks within the same benchmark.

Several works use FVL to optimize cache, memory or
bus encoding, but they have different criteria to estimate the
frequent values. Possible criteria are to consider only one fixed
value (the zero value) as the most frequent value [5], to
consider only small values (up to 8 bits) [6] or to consider
the most common values in the initial states of program
execution as a representation of the frequent values of the full
program [2]. All these alternatives assume that frequent values
are roughly constant in the whole execution of the programs.

In this work, we show that frequent values are not constant
during the full program execution: for one particular time in-
terval they may be different from the ones of another interval,
and also different from the global frequent values. To evaluate
that, we divide the execution in chunks, we experiment with
different sizes, and collect the frequent values on those chunks.
We observe that the frequent values are different among
chunks, and they are also distinct from the global frequent
values. We instrument the SPEC2006 benchmarks applying
various criteria to obtain the frequent values.

In the same way as our work, Yang et al. [4] suggested
to dynamically change the frequent values, but their study
was limited to fixed intervals of 10 million instructions.
Their results did not show a great advantage in dynamically
changing the frequent values. In contrast, our work explores
the temporal frequent value locality at a smaller granularity,
and we demonstrate that this makes the difference for most of
the tested benchmarks.

Overall, the contributions of this work are twofold: First,
we introduce the concept of Temporal Frequent Value Locality,
and we study its potential for future architecture optimizations
(Section II). And second, we propose two simple imple-
mentable hardware approaches to leverage Temporal Frequent
Value Locality (Section III). Furthermore, we evaluate our
proposals (Section IV) and we show its potential in a prac-
tical case for increasing the effective bus memory bandwidth
(Section V).

II. TEMPORAL FREQUENT VALUE LOCALITY (TFVL)

We define Temporal Frequent Value Locality (TFVL) as the
temporal variations in the frequent values along the execution
of the programs. This means that the frequent values of a
program could not be the same if we observe the execution of
a program as a whole, or if we observe at some delta (a chunk
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with a predetermined small size) at any point of the program
execution.

In this section, we measure the potential of TFVL by
analyzing the frequent values in fixed-size chunks along the
execution of several benchmarks. These techniques are not
profitable for any real implementation because the statistics
presented are the results of monitoring the whole benchmarks.
However, this analysis establishes an upper bound of the
benefits that we could obtain leveraging TFVL. We will
provide implementable approaches in Section III.

A. Evaluation of the Potential of TFVL

We designed a pintool [7] to dynamically analyze the
benchmarks from SPEC2006 suite, and collect frequent value
patterns. We use the reference inputs, and gather information
from all load memory access by monitoring the 8 values of
the corresponding requested cache block (64 byte blocks).
We use the pinpoints [8] methodology to find representative
simulation points, and pinplay [9] to log these regions and
deterministically replay them.

To quantify the potential of TFVL, we divided the program
execution into chunks of consecutive instructions containing
a fixed number of memory accesses, and we monitored the
frequent values in each chunk. The overall frequent value stats
of an execution are obtained by accumulating all the frequent
value counts of each chunk. We reference this experiment
as Ideal Chunk (IC) in the remaining of this paper. Notice
that as the chunk decreases, the percentage of frequent values
increases, up to 100% when the chunk is the size of the
number of frequent values. Notice also that, despite it is well
known that the programs go through phases [8], our scheme
is agnostic of these phases, as they are orders of magnitude
bigger (in the order of more than 100 million instructions) than
our chunk size, and therefore, the set of frequent values can
change a lot among the many chunks contained in a program
phase.

In the IC experiment, when the chunks are very small, the
results are close to the ideal (the frequent values are updated
very frequently). The extreme case is when the number of
frequent values match the size of the interval, implying that
all the values of the interval are frequent values. On the
other hand, when the chunk gets bigger, the frequent values
are renewed with less frequency, and the presence of TFVL
decreases with the size of the chunk. The extreme case is when
there is only one chunk in the whole execution, and TFVL is
not leveraged at all (equivalent to the IG experiment).

We compare TFVL against the classical FVL, which we
quantify by obtaining the most frequent values in the entire
execution of the program (we reference this experiment as
Ideal Global (IG) in the remaining of this paper).

Figure 1 shows the percentage of loads that are frequent
values in the IG and IC experiments (considering 8, 16, 32
and 64 frequent values). The IC experiments use chunks of
2000 load instructions. From this graph we can observe two
phenomena. The first is that in some of the benchmarks the
difference between the global and the chunk approaches is

huge: in h264ref or wrf is approximately 2× and, in other
cases, even more (namd calculix or omnetpp). The second
phenomenon is that some benchmarks have a narrow frequent
values range, whereas other benchmarks have a wider range
of frequent values. For example, in zeusmp the difference
between using 8 or 64 frequent values is small, however, in
other benchmarks like calculix the difference is much bigger.

Figure 2 shows the percentage of frequent values depending
on the monitored chunk’s size for the IC experiment. We
also included the IG experiment for reference. This graph
clearly reflects that the percentage of frequent values decrease
with bigger chunks. In contrast, early experiments by Yang et
al. [4] use chunks of 10 million instructions, which is roughly
equivalent to our experiment with chunks of 2304000 load
instructions, and does not allow to experiment the advantages
of changing the frequent values dynamically. Their results are
very close to the global frequent value solution in most of the
cases, precisely because of the chosen granularity.

We can make several observations about the Figure 2.
First, some benchmarks present more TFVL than others. In
omnetpp we can observe a big TFVL, as the difference in the
percentage of frequent values decrease a lot when the chunk
size increases. On the other hand, zeusmp or lbm presents
low TFVL. The cases of povray and milc are particular: it
presents TFVL until size 18000 (approximately), and then the
frequent values in the chunks are roughly the same that the
global frequent values.

III. HARDWARE APPROACHES

The results showed in the previous section are a good
indicative of the potential of TFVL. However, it is not possible
to take advantage of these schemes in a realistic scenario. In
this section we briefly review some of the state-of-the-art pro-
posals for leveraging frequent value locality (Section III-A),
and we propose two realistic implementable techniques to take
advantage of TFVL (Section III-B), one with fixed chunk sizes,
and another with variable chunk sizes.

A. Approaches for Leveraging FVL

There are some previous works doing practical implemen-
tations leveraging FVL for optimizing cache designs. We
describe two representative implementations that take entirely
different approaches to defining frequent values.

Small Values (SV): Small-value locality [6], [10] can be
considered as a type of frequent value locality, as small values
are usually more common than big values, and they usually are
a good estimation of the actual frequent values. Small values
are fixed and known during the full execution of the program,
and, therefore, the hardware approaches for leveraging them
can be simpler. The most typical small values are from a
unique value (usually the most common is the zero) [5] to 255
values (the lowest values, represented by 8bits) [10]. However,
as we will see in Section IV, the results are not as good as
our chunk-based solutions.
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Fig. 1. Percentage of frequent values for the Ideal Global (IG) and Ideal Chunk (IC) experiments considering a different number of frequent values (FV).
The IC results are obtained with chunks of 2000 load instructions.
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Fig. 2. Percentage of frequent values for the Ideal Chunk (IC) experiment considering chunks from sizes 500 to 2304000 load instructions. We are considering
32 frequent values.

Frequent Values at Initial States (FVIS): The first
paper proposing frequent value locality [1] also proposed a
cache scheme that compresses the frequent values in only a
few bits. The technique to estimate the program’s frequent
values consists of monitoring the initial states of the execution
to find them out. These values discovered in the initial states
will be considered in the remainder of the execution as the
most frequent values, and encoded with only a few bits
(compression).

This approach to find frequent values has two problems.
First, the frequent values are only monitored during the
initial states of the program (5% in previous works [2]) and,
therefore, in most cases, they are not very representative
of the whole program execution. And second, during the
monitoring phase, the frequent values can not be used for
compression. Therefore, with long monitoring phases, we will
miss optimization opportunities, and with short monitoring
phases, the estimation of the frequent values could be very
imprecise.

Our approaches to leverage TFVL described in Section III-B
use a model inspired by a FVL table proposed by Yang et al.
[2]. They develop an energy efficient frequent value cache that
uses a hardware table to calculate the frequent values. This
table has 2n entries that are necessary to find the first n most
frequent values. Each entry of this table contains two fields,
one for the value, and another for a c bit saturating counter.
At each memory access, this table is updated as follows: if the
value is present in the table, its counter is increased. If it is
not present, the value is added to the bottom half of the table

Fig. 3. Hardware table to discover frequent values, showing the frequent
value zone, the fence zone and the victim zone.

with the counter set to zero (the victim is the entry with the
lowest counter - the less recently seen value ). If the counter
saturates, the value is promoted one position up in the table
(it is swapped with the next position), and the counter is reset.
The top n values of the table are considered the most frequent
values.

B. Approaches for Leveraging TFVL

We propose two schemes to discover frequent values dy-
namically and leverage TFVL, both based in a modified ver-
sion of the hardware table defined previously in Section III-A.
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We introduce some optimizations that work better for quickly
discovering frequent values in small chunks:

• As showed in Figure 3, our hardware table has 2n entries,
the first n represent the current frequent values (frequent
value zone), the next f values are in the fence zone, and
the last n − f values (victim zone) are the candidates
for replacement when a new entry has to be allocated.
The addition of the fence zone improve the results in our
scenario of small chunks by avoiding to discard some
potential future frequent values.

• In our approach, we use a c field with only one bit,
because we want to discover the frequent values quickly.
Therefore, if we replace the values based on the smallest
counter, we could have many values with the c counter
set to zero. For this reason, a random replacement policy
works better in our victim zone.

Next, we will describe particular changes for each proposal.
Fixed Chunks (FC): The Fixed Chunks (FC) scheme

divides the program execution into chunks of the same size,
in the same way than IC experiment. However, to make it
implementable, the frequent values considered in one chunk
are calculated in the previous chunk. This model works well
when there is temporal locality between consecutive chunks,
which is the common case, as we will see in Section IV.

We use the hardware table previously described (Table 3) to
calculate the frequent values. When a chunk finishes, we get
the most frequent values in that chunk (the first n positions in
the table are copied to a translation table), which are assumed
to be the frequent values for the next chunk. At the end of
each chunk, the table resets the victim zone, keeping the two
other zones (frequent value zone and fence zone) untouched.

Variable Chunks (VC): The Variable Chunks (VC)
scheme does not have a fixed chunk size. The frequent values
change at some point of the execution when there is a change
on the first n values in the hardware table (Table 3). In practice,
this happens when the entry n saturates its counter (c) and
moves up a position in the table (the positions n and n − 1
are swapped).

Furthermore, we propose two optimizations for our ap-
proach. The first optimization, for relaxing the number of
changes in the frequent values, is to change the frequent values
when the n entry saturates its counter more than one time
(allowing several changes in the upper n values of the table
before changing the frequent values). The second optimization
is to establish a minimum interval size, trying to avoid a lot of
unnecessary changes mainly at the beginning of the execution.

Unlike the FC proposal, we could use the same hardware
table for collecting frequent values and for encoding frequent
values (it does not require an extra translation table), as the
upper values of this table are always the actual estimated
frequent values, which allows reducing the hardware cost.

IV. EVALUATION OF HARDWARE APPROACHES

We use the experimental setup described in Section II-A
to evaluate our hardware proposals by comparing them with

the state-of-the-art schemes of Section III and with the ideal
experiments of Section II.

We track 32 frequent values for all the experiments and
chunks of 2000 load instructions in Ideal Chunk (IC) and Fixed
Chunks (FC). We chose these values because they achieve
good results with moderate complexity (see Figure 1 and
Figure 2). The small value scheme (SV) considers small values
up to 255 (8bits), and the frequent value at initial states (FVIS)
monitors the first 5% of the instructions to estimate the 32
frequent values (we do not use pinpoints methodology for
this initial states). Our VC and FC approaches use a table
(as described in Section III-B) with 64 entries, of which 32
are used for the frequent value zone, 8 for the fence zone and
24 for the victim zone. Each entry contains the value and a
1 bit counter (implemented as a simple flag). We set to 500
the minimum chunk size to change frequent values, and we
establish to 1 the number of changes in the frequent value zone
to update the frequent values (as we found 1 value enough in
combination with the minimum interval).

Figure 4 shows the percentage of frequent values consid-
ering all the schemes. Our two approaches based in chunks
(FC and VC) overcome the ideal global (IG) in 23 of 29
benchmarks, and by far in some of them (perlbench, calculix
or sphinx3). The FVIS scheme demonstrates poor performance
in general, which shows that it is not a good strategy when
running reference inputs and complete benchmarks (the initial
values, usually corresponding to the initialization phase of the
benchmarks, do not represent the whole execution). The SV
approach works pretty well for some benchmarks (e.g. sjeng),
but in average is still very far from our approaches. Notice also
that the SV and the FVIS are realistic ways to achieve the best
global frequent values, and therefore their results are always
below the ideal global frequent values (IG).

Furthermore, the results for our FC and VC are very close
to the ideal chunk scheme (IC), which demonstrates that our
realistic schemes perform pretty well. Finally, we can see in
the figure that VC outperform the FC scheme in almost all the
cases, mainly for its runtime adaptability characteristics.

Figure 5 shows the average interval size of our variable
chunk (VC) approach; 12 of 29 benchmarks have an interval
average size superior to the FC fixed 2000 chunk size, and
the remainder have a size close to 2000 (only lbm has a
size inferior to 1000). Despite the difference in the number
of frequent values between FC and VC (see Figure 4) is not
big in any case (although superior in VC in most of the cases),
bigger chunks allow to reduce complexity and save energy.

Figure 5 also shows the approximate energy consumption
of the VC scheme, calculated using a customized mcpat [11]
version. We modeled the VC table as a CAM, and we compare
its energy consumption with the energy consumed by a 32KB
data cache with 8 ways and 4 cycle latency. The figure shows
that the energy consumption is contended for the most of the
benchmarks (between 4,8% and 10,8%), but still with some
space for optimizations.
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Fig. 4. Percentage of frequent values in all approaches considered in this work. We track 32 frequent values and chunks of size 2000.
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Fig. 5. Average interval size in the VC approach, and the energy consumption compared with a 32KB data cache.

A. Discussion

The most challenging problem to take advantage of chunk-
based scheme is the fact that the frequent values could
potentially change at every chunk. When designing a memory
device, this could introduce a source of complexity and energy
consumption, and it requires taking the design carefully. The
size of the chunks in the FC scheme is also a key factor to
reduce complexity and energy.

However, leveraging TFVL for compression of data in bus
or communication networks is more straightforward, as the
compressed data do not remain in the network, and therefore,
we do not need to change them when the frequent values
change. Notice also that, depending on the optimization for
which TFVL is been used, the frequent values should be
accumulated in different places (cache, memory, etc.).

V. A PRACTICAL CASE: DRAM BANDWIDTH
COMPRESSION

In this section, we show a practical case for leveraging
TFVL to increase the main memory bandwidth. To show
that, we used zsim [12] for simulating an OoO core and the
main memory system. Our baseline configuration, described
in Table I, is composed of one Westmere OoO core, separate
32kB L1 caches for instructions and data, a shared 256KB L2
cache, and a DLP L2 prefetcher. The memory system has 2
channels and a DDR3-1333-CL10 module per channel, with
a theoretical maximum bandwidth of 20,8 GB/s. Notice that,
unlike previous section, the only compressed memory requests
are the ones that miss the last level cache.

We implemented compression techniques to the data read
from memory with the aim of increasing the effective band-
width. We compare our VC scheme with three state-of-the-
art compression algorithms: Small Values (SV) [5], Frequent

Pattern Compression (FPC) [13] and Base-Delta-Immediate
compression (BDI) [14]. In the SV scheme, we consider 256
frequent values (from 0 to 255). Our implementation of the
FPC scheme has 8 different patterns (3 bits), and it compresses
32 bit words. BDI is configured with two bases, 4-byte offset,
four bits to encode the compression scheme, and a bit mask
to differentiate between two bases.

We test all the SPEC2006 benchmarks, using the same
pinpoints methodology [8] of Section II-A. Figure 6 shows
the effective bandwidth increase when using SV, FPC, BDI
and VC schemes, compared with a baseline system without
any compression mechanism. In 10 of 26 benchmarks, our
VC scheme achieves more than 100% of bandwidth increase,
and 20 of 26 benchmarks reach more than 50% of bandwidth
increase. Compared with the other schemes, our VC only
has worst performance in 5 of 26 benchmarks (and for
a low margin). Overall, the SV scheme shows an average
16.6% bandwidth increase (geometric mean), the BDI achieves
16.3%, the FPC schemes reach 31.7% and our VC scheme
goes up to 62.8%, which demonstrates the advantages of
leveraging TFVL. Notice also that the energy consumption of
our VC scheme in this scenario is much lower than in Figure 5,
as we are compressing only on Last Level Cache misses.

In general, the benchmarks that exhibit a good frequent
value locality, have a very good temporal frequent value lo-
cality (the most of the SPEC2006 benchmarks). Furthermore,
some benchmarks with low frequent value locality have a
good temporal frequent value locality (the cases of bzip2 or
hmmer).

VI. CONCLUSIONS

In this paper we propose temporal frequent value locality as
a new opportunity to implement architecture level optimiza-
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Fig. 6. Effective bandwidth increase of the SV, BDI, FPC and our VC scheme, compared with the uncompressed baseline.

TABLE I
PROCESSOR AND MEMORY CONFIGURATION OF THE BASELINE

SIMULATOR FOR EVALUATING DRAM BANDWIDTH COMPRESSION.

core
Westmere OOO x86-64bit, 4-issue
128-entry ROB, 32-entry load queue
32-entry store queue

L1I Cache 32KB 4-way, LRU, 3-cycle latency
L1D Cache 32KB 8-way, LRU, 4-cycle latency

L2 Cache 256KB, 16-way, LRU, 12-cycle latency
16 MSHRs

Prefetcher DLP L2, 16 stream buffers, 64-line buffers

Memory DDR3-1333-CL10, 2 channels, 4 ranks per
channel, 8 banks per rank (max. 20.8 GB/s)

tions (memory hierarchy and communication networks). First,
we analyze the potential of the temporal frequent value locality
(TFVL) and we observe that for some benchmarks the benefit
is very big compared with the classical frequent value locality
(FVL). Second, we propose two realistic hardware schemes
that leverages TFVL, achieving better results (in average, 49%
of the memory accesses in SPEC2006 get one of the 32 most
frequent values) than the ideal scheme for FVL in all the cases,
and getting close to the ideal chunk based scheme. Finally,
for proving the potential of leveraging TFVL properties in the
memory subsystem, we evaluate one of our TFVL schemes
for bandwidth compression in an OoO core with ordinary
DRAM memory. The results show that our scheme increases
the average bandwidth in 63% (up to 285%), the double than
the best state-of-the-art compression algorithm we tested.
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