
20
21

 I
E

E
E

 I
n

te
rn

at
io

n
al

 S
ym

p
o

si
u

m
 o

n
 H

ig
h

-P
er

fo
rm

an
ce

 C
o

m
p

u
te

r
A

rc
h

it
ec

tu
re

 (
H

P
C

A
)

| 9
7

8
-1

-6
6

5
4

-2
2

3
5

-2
/2

0
/$

3
1

.0
0

 ©
2

0
2

1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0

9
/H

P
C

A
5

1
6

4
7

.2
0

2
1

.0
0

0
3

1

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

SynCron: Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula^ * Nandita Vijaykumar* * Nikela Papadopoulou^ Vasileios Karakostas^ Ivan Fernandez§ *
Juan Gómez-Luna* Lois Orosa* Nectarios Koziris^ Georgios Goumas^ Onur Mutlu*

^National Technical University of Athens *ETH Zürich * University of Toronto § University of Malaga
N e a r-D a ta -P ro c e s s in g (N D P) a rc h ite c tu re s p re s e n t a

p ro m is in g w a y to a lle v ia te da ta m ovem ent costs a n d can p ro
v id e s ig n if ic a n t p e rfo rm a n c e a n d energy bene fits to p a r a l le l
a p p lic a tio n s . T y p ic a lly , N D P a rc h ite c tu re s s u p p o rt seve ra l
N D P units, each in c lu d in g m u lt ip le s im p le cores p la c e d close
to m em ory. To f u l ly leverage the benefits o f N D P a n d achieve
h ig h p e rfo rm a n c e f o r p a r a l le l w o rk lo a d s , e ff ic ie n t s yn ch ro
n iza tio n am ong the N D P cores o f a system is necessary. H o w
ever, s u p p o rt in g s y n c h ro n iz a tio n in m any N D P system s is
c h a lle n g in g because they la c k sh a re d caches a n d h a rd w a re
cache coherence su p p o rt, w h ic h a re co m m o n ly used f o r syn
ch ro n iza tio n in m u ltic o re systems, a n d co m m u n ica tio n across
d iffe re n t N D P u n its can be expensive.

Th is p a p e r co m prehens ive ly exam ines the s y n c h ro n iza tio n
p ro b le m in N D P systems, a n d p ro p o se s S ynC ron , a n e n d -to -
end syn ch ro n iza tio n so lu tio n f o r N D P systems. S ynC ron adds
lo w -c o s t h a rd w a re s u p p o rt n e a r m e m o ry f o r sy n ch ro n iza tio n
a c c e le ra tio n , a n d avo ids the need f o r h a rd w a re cache c o h e r
ence su p p o rt. S yn C ro n has th ree com ponen ts : 1) a s p e c ia l
ized cache m e m o ry s tru c tu re to a v o id m e m o ry accesses f o r
syn ch ro n iza tio n a n d m in im iz e la te n cy overheads, 2) a h ie ra r
c h ic a l m essage-passing co m m u n ic a tio n p ro to c o l to m in im ize
expensive com m un ica tion across N D P un its o f the system, and
3) a h a rd w a re -o n ly o v e rflo w m anagem en t schem e to a v o id
p e rfo rm a n c e d e g ra d a tio n w hen h a rd w a re resources f o r syn
c h ro n iz a tio n tra c k in g a re exceeded.

We eva luate S ynC ron us ing a v a r ie ty o f p a ra l le l w ork loads,
c o v e rin g v a r io u s c o n te n tio n scena rios . S yn C ro n im p ro ve s
p e rfo rm a n c e b y 1 .2 7 x on average (up to 1 .7 8 x) u n d e r h ig h
co n te n tio n scenarios, a n d by 1 .3 5 x on average (up to 2 .2 9 x)
u n d e r lo w -co n te n tio n re a l a p p lica tio n s , com pared to s ta te -o f-
th e -a r t approaches. S ynC ron reduces system energy consum p
tio n b y 2 .0 8 x on average (up to 4 .2 5 x) .

1. Introduction
Recent advances in 3D-stacked memories [59,72, 85,92,

93, 145] have renewed interest in Near-Data Processing
(NDP) [8,9, 17, 110]. NDP involves performing computa­
tion close to where the application data resides. This al­
leviates the expensive data movement between processors
and memory, yielding significant performance improvements
and energy savings in parallel applications. Placing low-
power cores or special-purpose accelerators (hereafter called
NDP cores) close to the memory dies of high-bandwidth 3D-
stacked memories is a commonly-proposed design for NDP
systems [8,9, 19- 21,23,38,42- 46,49,66,67,82- 84,98, 105,
110- 113, 117, 119, 131, 132, 143, 155, 158]. Typical NDP ar­
chitectures support several NDP units connected to each other,
with each unit comprising multiple NDP cores close to mem­
ory [8, 19,66,83, 143, 155, 158]. Therefore, NDP architectures
provide high levels of parallelism, low memory access latency,
and large aggregate memory bandwidth.

Recent research demonstrates the benefits of NDP for par­
allel applications, e.g., for genome analysis [23,84], graph
processing [8,9,20,21, 112,155,158], databases [20,38], secu­
rity [54], pointer-chasing workloads [25,60,67,99], and neural
networks [19,45,82,98]. In general, these applications exhibit
high parallelism, low operational intensity, and relatively low

cache locality [15, 16,33,50, 133], which make them suitable
for NDP.

Prior works discuss the need for efficient synchronization
primitives in NDP systems, such as locks [25,99] and barri­
ers [8,43, 155, 158]. Synchronization primitives are widely
used by multithreaded applications [39,40,48,69,70,90, 136­
138, 140], and must be carefully designed to fit the under­
lying hardware requirements to achieve high performance.
Therefore, to fully leverage the benefits of NDP for parallel
applications, an effective synchronization solution for NDP
systems is necessary.

Approaches to support synchronization are typically of two
types [63,64]. First, synchronization primitives can be built
through sh a re d m e m o ry , most commonly using the atomic
read-modify-write (rmw) operations provided by hardware.
In CPU systems, atomic rm w operations are typically im­
plemented upon the underlying hardware cache coherence
protocols, but many NDP systems do n o t support hardware
cache coherence (e.g., [8,46, 143, 155, 158]). In GPUs and
Massively Parallel Processing systems (MPPs), atomic rm w
operations can be implemented in dedicated hardware atomic
units, known as rem ote a to m ics . However, synchronization
using remote atomics has been shown to be inefficient, since
sending every update to a fixed location creates high global
traffic and hotspots [41,96, 108, 147, 153]. Second, synchro­
nization can be implemented via a m essage-passing scheme,
where cores exchange messages to reach an agreement. Some
recent NDP works (e.g., [8,43, 55, 158]) propose message­
passing barrier primitives among NDP cores of the system.
However, these synchronization schemes are still inefficient,
as we demonstrate in Section 6, and also lack support for lock,
semaphore and condition variable synchronization primitives.

Hardware synchronization techniques that do not rely on
hardware coherence protocols and atomic rm w operations have
been proposed for multicore systems [1- 3,94,97,116,146,157].
However, such synchronization schemes are tailored for the
specific architecture of each system, and are not efficient or
suitable for NDP systems (Section 7). For instance, CM5 [94]
provides a barrier primitive via a dedicated physical network,
which would incur high hardware cost to be supported in
large-scale NDP systems. LCU [146] adds a control unit to
each CPU core and a buffer to each memory controller, which
would also incur high cost to implement in a re a -c o n s tra in e d
NDP cores and controllers. SSB [157] includes a small buffer
attached to each controller of the last level cache (LLC) and
MiSAR [97] introduces an accelerator distributed at the LLC.
Both schemes are built on the shared cache level in CPU
systems, which most NDP systems do n o t have. Moreover, in
NDP systems with n o n -u n ifo rm memory access times, most
of these prior schemes would incur significant performance
overheads under high-contention scenarios. This is because
they are oblivious to the non-uniformity of NDP, and thus
would cause excessive traffic across NDP units of the system
upon contention (Section 6.7.1).

Overall, NDP architectures have several important charac­
teristics that necessitate a new approach to support efficient
synchronization. First, most NDP architectures [8, 19,25,38,
42- 46,49,55,67,98, 110, 111, 113, 119, 155, 158] lack shared

978-1-6654-2235-2/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00031

263

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

caches that can enable low-cost communication and synchro­
nization among NDP cores of the system. Second, hardware
cache coherence protocols are typically not supported in NDP
systems [8,19,25,38,42- 45,49,55,67,82,98,111,119,155,158],
due to high area and traffic overheads associated with such
protocols [46, 143]. Third, NDP systems are non-uniform,
distributed architectures, in which inter-unit communication is
more expensive (both in performance and energy) than intra­
unit communication [8,20,21,38,43,83, 155, 158].

In this work, we present S ynC ron , an efficient synchroniza­
tion mechanism for NDP architectures. SynCron is designed to
achieve the goals of performance, cost, programming ease, and
generality to cover a wide range of synchronization primitives
through four key techniques. First, we offload synchroniza­
tion among NDP cores to dedicated low-cost hardware units,
called Synchronization Engines (SEs). This approach avoids
the need for complex coherence protocols and expensive rm w
operations, at low hardware cost. Second, we directly buffer
the synchronization variables in a specialized cache memory
structure to avoid costly memory accesses for synchronization.
Third, S ynC ron coordinates synchronization with a hierarchi­
cal message-passing scheme: NDP cores only communicate
with their local SE that is located in the same NDP unit. At
the next level of communication, all local SEs of the sys­
tem’s NDP units communicate with each other to coordinate
synchronization at a global level. Via its hierarchical commu­
nication protocol, S ynC ron significantly reduces synchroniza­
tion traffic across NDP units under high-contention scenar­
ios. Fourth, when applications with frequent synchronization
oversubscribe the hardware synchronization resources, S yn-
C ro n uses an efficient and programmer-transparent overflow
management scheme that avoids costly fallback solutions and
minimizes overheads.

We evaluate S ynC ron using a wide range of parallel work­
loads including pointer chasing, graph applications, and time
series analysis. Over prior approaches (similar to [8, 43]),
S yn C ro n improves performance by 1.27 x on average (up to
1.78x) under high-contention scenarios, and by 1.35x on
average (up to 2.29 x) under low-contention scenarios. In
real applications with fine-grained synchronization, S ynC ron
comes within 9.5% of the performance and 6.2% of the energy
of an ideal zero-overhead synchronization mechanism. Our
proposed hardware unit incurs very modest area and power
overheads (Section 6.8) when integrated into the compute die
of an NDP unit.

This paper makes the following contributions:
• We investigate the challenges of providing efficient synchro­

nization in Near-Data-Processing architectures, and propose
an end-to-end mechanism, S yn C ro n , for such systems.

• We design low-cost synchronization units that coordinate
synchronization across NDP cores, and directly buffer syn­
chronization variables to avoid costly memory accesses to
them. We propose an efficient message-passing synchroniza­
tion approach that organizes the process hierarchically, and
provide a hardware-only programmer-transparent overflow
management scheme to alleviate performance overheads
when hardware synchronization resources are exceeded.

• We evaluate S ynC ron using a wide range of parallel work­
loads and demonstrate that it significantly outperforms prior
approaches both in performance and energy consumption.
S ynC ron also has low hardware area and power overheads.

2. Background and Motivation
2.1. Baseline Architecture

Numerous works [8,9,19- 21,25,38,43,45,54,55,67,73,82,
99, 112, 128, 143, 155, 158] show the potential benefit of NDP
for parallel, irregular applications. These proposals focus on

the design of the compute logic that is placed close to or within
memory, and in many cases provide special-purpose near-data
accelerators for specific applications. Figure 1 shows the base­
line organization of the NDP architecture we assume in this
work, which includes several NDP units connected with each
other via serial interconnection links to share the same physi­
cal address space. Each NDP unit includes the memory arrays
and a compute die with multiple low-power programmable
cores or fixed-function accelerators, which we henceforth refer
to as NDP cores. NDP cores execute the offloaded NDP kernel
and access the various memory locations across NDP units
with non-uniform access times [8,20,21,38, 143, 155, 158].
We assume that there is no OS running in the NDP system.
In our evaluation, we use programmable in-order NDP cores,
each including small private L1 I/D caches. However, S yn
C ro n can be used with any programmable, fixed-function or
reconfigurable NDP accelerator. We assume software-assisted
cache-coherence (provided by the operating system or the
programmer), similar to [43, 143]: data can be either thread-
private, shared read-only, or shared read-write. Thread-private
and shared read-only data can be cached by NDP cores, while
shared read-write data is uncacheable.

Figure 1: High-level organization of an NDP architecture.
We focus on three characteristics of NDP architectures that

are of particular importance in the synchronization context.
First, NDP architectures typically do not have a shared level
of cache memory [8, 19,25,38,42- 46,49,55,67,98, 110, 111,
113, 119, 155, 158], since the NDP-suited workloads usually
do not benefit from deep cache hierarchies due to their poor lo­
cality [33,43,133,143]. Second, NDP architectures do not typ­
ically support conventional hardware cache coherence proto­
cols [8,19,25,38,42- 45,49,55,67,82,98,111,119,155,158], be­
cause they would add area and traffic overheads [46, 143], and
would incur high complexity and latency [4], limiting the bene­
fits of NDP. Third, communication across NDP units is expen­
sive, because NDP systems are non-uniform distributed archi­
tectures. The energy and performance costs of inter-unit com­
munication are typically orders of magnitude greater than the
costs of intra-unit communication [8,20,21,38,43,83,155,158],
and thus inter-unit communication may slow down the execu­
tion of NDP cores [155].
2.2. The Solution Space for Synchronization

Approaches to support synchronization are typically either
via shared memory or message-passing schemes.
2.2.1. Synchronization via Shared Memory. In this case,
cores coordinate via a consistent view of shared memory lo­
cations, using atomic read/write operations or atomic read-
modify-write (rm w) operations. If rm w operations are n o t
supported by hardware, Lamport’s bakery algorithm [87] can
provide synchronization to N participating cores, assuming se­
quential consistency [86]. However, this scheme scales poorly,
as a core accesses O(N) memory locations at each synchro­
nization retry. In contrast, commodity systems (CPUs, GPUs,
MPPs) typically support rm w operations in hardware.

GPUs and MPPs support rm w operations in specialized
hardware units (known as rem ote a to m ic s), located in each
bank of the shared cache [58, 148], or the memory con­
trollers [81,88]. Remote atomics are also supported by an NDP

264

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

work [43] at the vault controllers of Hybrid Memory Cube
(HMC) [59,145]. Implementing synchronization primitives us­
ing remote atomics requires a spin-wait scheme, i.e., executing
consecutive rm w retries. However, performing and sending
every rm w operation to a shared, fixed location can cause high
global traffic and create hotspots [41,96, 108, 147, 153]. In
NDP systems, consecutive rm w operations to a remote NDP
unit would incur high traffic a cross NDP units, with high
performance and energy overheads.

Commodity CPU architectures support rm w operations ei­
ther by locking the bus (or equivalent link), or by relying
on the hardware cache coherence protocol [68, 135], which
many NDP architectures do not support. Therefore, coherence-
based synchronization [13,24,27, 35, 36, 57, 100, 101, 103,
122, 126, 156] cannot be directly implemented in NDP archi­
tectures. Moreover, based on prior works on synchroniza­
tion [22,30,76, 102, 107, 140], coherence-based synchroniza­
tion would exhibit low scalability on NDP systems for two
reasons. First, it performs poorly with a la rge number of cores,
due to low scalability of conventional hardware coherence
protocols [61,79,80, 135]. Most NDP systems include sev­
eral NDP units [8, 83, 155, 158], each typically supporting
hundreds of small, area-constrained cores [8, 19, 155, 158].
Second, the non-uniformity in memory accesses signifi­
cantly affects the scalability of coherence-based synchroniza­
tion [22,30,107,156]. Prior work on coherence-based synchro­
nization [30] observes that the latency of a lock acquisition
that needs to transfer the lock a cross NUMA sockets can be
up to 12.5 x higher than that w ith in a socket. We expect such
effects to be aggravated in NDP systems, since they are by na­
ture n o n -u n ifo rm and d is tr ib u te d [8,20,21,38,43,83,155,158]
with very low memory access latency within an NDP unit.

We validate these observations on both a real CPU and our
simulated NDP system. On an Intel Xeon Gold server, we
evaluate the operation throughput achieved by two coherence-
based lock algorithms (Table 1), i.e., TTAS [122] and Hier­
archical Ticket Lock (HTL) [103], using a microbenchmark
taken from the l ib s lo c k library [30]. When increasing the num­
ber of threads from 1 to 14 within a single socket, throughput
drops by 3.91 x and 2.77x for TTAS and HTL, respectively.
Moreover, when pinning two threads on different NUMA sock­
ets, throughput drops by up to 2.29 x over when pinning them
on the same socket, due to non-uniform memory access times
of lock variables.

Million Operations 1 thread 14 threads 2 threads 2 threads
per Second single-socket single-socket same-socket different-socket

TTAS lock [122] 8.92 2.28 9.91 4.32
Hierarchical Ticket lock [103] 8.06 2.91 9.01 6.79

Table 1: Throughput of two coherence-based lock algorithms on
an Intel Xeon Gold server using the libslock library [30].

In our simulated NDP system, we evaluate the performance
achieved by a stack data structure protected with a coarse­
grained lock. Figure 2 shows the slowdown of the stack when
using a coherence-based lock [63] (m e s i- lo ck), implemented
upon a MESI directory coherence protocol, over using an ideal
lock with zero cost for synchronization (id e a l- lo c k). First, we
observe that the high contention for the cache line containing
the m e s i-lock and the resulting coherence traffic inside the net­
work significantly limit scalability of the stack as the number
of cores increases. With 60 NDP cores within a single NDP
unit (Figure 2a), the stack with m e s i-lo c k incurs 2.03 x slow­
down over id ea l-lock . Second, we notice that the non-uniform
memory accesses to the cache line containing the m e s i- lo c k
also impact the scalability of the stack. When increasing the
number of NDP units while keeping total core count constant
at 60 (Figure 2b), the slowdown of the stack with m e s i- lo c k
increases to 2.66 x (using 4 NDP units) over id e a l- lo c k . In

n o n -u n ifo rm NDP systems, the scalability of coherence-based
synchronization is severely limited by the long transfer latency
and low bandwidth of the interconnect used between the NDP
units.

IS
J 1.0
1/1 os

0.0

(a)
ideal-lock mesi-lock

15 30 45
NDP cores

60 2 3
NDP units

Figure 2: Slowdown of a stack data structure using a coherence-
based lock over using an ideal zero-cost lock, when varying (a)
the NDP cores within a single NDP unit and (b) the number of
NDP units while keeping core count constant at 60.

1 4

2.2.2. Message-passing Synchronization. In this approach,
cores coordinate with each other by exchanging messages
(either in software or hardware) in order to reach an agree­
ment. For instance, a recent NDP work [8] implements a
barrier primitive via hardware message-passing communica­
tion among NDP cores, i.e., one core of the system works
as a m a s te r core to collect the synchronization status of the
rest. To improve system performance in n o n -u n ifo rm HMC-
based NDP systems, Gao et al. [43] propose a tre e -s ty le bar­
rier primitive, where cores exchange messages to first syn­
chronize within a vault, then across the vaults of an h Mc
cube, and finally across HMC cubes. In general, optimized
message-passing synchronization schemes proposed in the
literature [2,43,53,62,64,141] aim to minimize (i) the number
of messages sent among cores, and (ii) expensive network traf­
fic. To avoid the major issues of synchronization via shared
memory described above, we design our approach building on
the message-passing synchronization concept.
3. SynCron: Overview

S yn C ro n is an end-to-end solution for synchronization in
NDP architectures that improves performance, has low cost,
eases programmability, and supports multiple synchronization
primitives. S ynC ron relies on the following key techniques:
1. Hardware support for synchronization acceleration:
We design low-cost hardware units, called Synchronization
Engines (SEs), to coordinate the synchronization among NDP
cores of the system. SEs eliminate the need for complex cache
coherence protocols and expensive rm w operations, and incur
modest hardware cost.
2. Direct buffering of synchronization variables: We add a
specialized cache structure, the Synchronization Table (ST),
inside an SE to keep synchronization information. Such direct
buffering avoids costly memory accesses for synchronization,
and enables high performance under low-contention scenarios.
3. Hierarchical message-passing communication: We or­
ganize the communication hierarchically, with each NDP unit
including an SE. NDP cores communicate with their local
SE that is located in the same NDP unit. SEs communicate
with each other to coordinate synchronization at a global level.
Hierarchical communication minimizes expensive communi­
cation across NDP units, and achieves high performance under
high-contention scenarios.
4. Integrated hardware-only overflow management: We
incorporate a hardware-only overflow management scheme to
efficiently handle scenarios when ST is fully occupied. This
programmer-transparent technique effectively limits perfor­
mance degradation under overflow scenarios.
3.1. Overview of SynCron

Figure 3 provides an overview of our approach. SynCron ex­
poses a simple programming interface such that programmers
can easily use a variety of synchronization primitives in their

265

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

multithreaded applications when writing them for NDP sys­
tems. The interface is implemented using two new instructions
that are used by NDP cores to communicate synchronization
requests to SEs. These are general enough to cover all seman­
tics for the most widely-used synchronization primitives.

Figure 3: High-level overview of SynCron.

We add one SE in the compute die of each NDP unit. For a
particular synchronization variable allocated in an NDP unit,
the SE that is physically located in the same NDP unit is
considered the M a s te r SE. In other words, the M a s te r S E is
defined by the address of the synchronization variable. It is
responsible for the global coordination of synchronization on
that variable, i.e., among all SEs of the system. All other SEs
are responsible only for the local coordination of synchroniza­
tion among the cores in the same NDP unit with them.

NDP cores act as clients that send requests to SEs via hard­
ware message-passing. SEs act as servers that process synchro­
nization requests. In the proposed hierarchical communication,
NDP cores send requests to their local SEs, while SEs of differ­
ent NDP units communicate with the M a s te r SE of the specific
variable, to coordinate the process at a global level, i.e., among
all NDP units.

When an SE receives a request from an NDP core for a
synchronization variable, it directly buffers the variable in its
ST, keeping all the information needed for synchronization in
the ST. If the ST is full, we use the main memory as a fallback
solution. To hierarchically coordinate synchronization via
main memory in ST overflow cases, we design (i) a generic
structure, called syncronV ar, to keep track of required synchro­
nization information, and (ii) specialized o ve rflo w messages to
be sent among SEs. The hierarchical communication among
SEs is implemented via corresponding support in message
encoding, the ST, and syn c ro n V a r structure.
3.2. SynCron’s Operation

S yn C ro n supports locks, barriers, semaphores, and condi­
tion variables. Here, we present S ynC ron ’ s operation for locks.
S ynC ron has similar behavior for the other three primitives.
Lock Synchronization Primitive: Figure 4 shows a system
composed of two NDP units with two NDP cores each. In
this example, all cores request and compete for the same lock.
First, all NDP cores send lo c a l lock acquire messages to their
SEs 17. After receiving these messages, each SE keeps track
of its requesting cores by reserving one new entry in its ST,
i.e., directly buffering the lock variable in ST. Each ST entry
includes a local waiting list (i.e., a hardware bit queue with one
bit for each local NDP core), and a global waiting list (i.e., a bit
queue with one bit for each SE of the system). To keep track of
the requesting cores, each SE sets the bits corresponding to the
requesting cores in the local waiting list of the ST entry. When
the local SE receives a request for a synchronization variable
f o r the f i r s t tim e, it sends a g lo b a l lock acquire message to the
M a s te r SE © , its the corresponding bit in the
global waiting list in its ST. This way, the M a s te r SE keeps
track of all requests to a particular variable coming from an SE,
and can arbitrate between different SEs. The local SE can then
serve successive local requests to the same variable until there
are no other local requests. By using the proposed hierarchical
communication protocol, the cores send local messages to

their local SE, and the SE needs to send o n ly one agg rega ted
message, on behalf of all its local waiting cores, to the M a s te r
SE. As a result, we reduce the need for communication through
the narrow, expensive links that connect different NDP units.

NDP Unit 0 NDP Unit 1

Figure 4: An example execution scenario for a lock requested by
all NDP cores.

The M a s te r SE first prioritizes the local waiting list, granting
the lock to its own local NDP cores in sequence (e.g., to NDP
Core 0 first @, and to NDP Core 1 next (4 in Figure 4). At the
end of the critical section, each local lock owner sends a lock
release message to its SE in order to release the lock. When
there are no other local requests, the M a s te r SE transfers the
control of the lock to the SE of another NDP unit based on
its global waiting list (5 . Then, the local SE grants the lock
to its local NDP cores in sequence (e.g., (6 , (7). After all
local cores release the lock, the SE sends an aggregated global
lock release message to the M a s te r S E ©
entry. When the message arrives at the M a s te r S E , if there
are no other pending requests to the same variable, the M a s te r
SE releases its ST entry. In this example, SEs directly buffer
the lock variable in their STs. If an ST is f u l l , the M a s te r SE
globally coordinates synchronization by keeping track of all
required information in main memory © , via our proposed
overflow management scheme (Section 4.3).
4. SynCron: Detailed Design

S yn C ro n leverages the key observation that all synchro­
nization primitives fundamentally communicate the same in­
formation, i.e., a waiting list of cores that participate in the
synchronization process, and a condition to be met to notify
one or more cores. Based on this observation, we design
S ynC ron to cover the four most widely used synchronization
primitives. Without loss of generality, we assume that each
NDP core represents a hardware thread context with a unique
ID. To support multiple hardware thread contexts per n Dp
core, the corresponding hardware structures of S ynC ron need
to be augmented to include 1-bit per hardware thread context.
4.1. Programming Interface and ISA Extensions

S yn C ro n provides lock, barrier, semaphore and condition
variable synchronization primitives, supporting two types of
barriers: within cores of the sam e NDP unit and within cores
across different NDP units of the system. S y n C ro n ’ s pro­
gramming interface (Table 2) implements the synchronization
semantics with two new ISA instructions, which are r ic h and
gene ra l enough to express all supported primitives. NDP cores
use these instructions to assemble messages for synchroniza­
tion requests, which are issued through the network to SEs.

SynC ron Program m ing Interface

syncronVar *create_syncvar ();
void destroy_syncvar (syncronVar *svar);
void lock_acquire (syncronVar *lock);
void lock_release (syncronVar *lock);
void barrier_wait_within_unit (syncronVar *bar, int initialCores);
void barrier_wait_across_units (syncronVar *bar, int initialCores);
void sem_wait (syncronVar *sem, int initialResources);
void sem_post (syncronVar *sem);
void cond_wait (syncronVar *cond, syncronVar *lock);
void cond_signal (syncronVar *cond);
void cond_broadcast (syncronVar *cond);

Table 2: SynCron’s Programming Interface (i.e., API).

266

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

re q _ syn c addr, opcode, in fo : This instruction creates a mes­
sage and commits when a response message is received back.
The a d d r register has the address of a synchronization variable,
the opcode register has the message opcode of a particular se­
mantic of a synchronization primitive (Table 3), and the in fo
register has specific information needed for the primitive (M es-
sa g e ln fo in message encoding of Fig. 5).

re q _ a syn c ad d r, opcode: This instruction creates a message
and after the message is issued to the network, the instruction
commits. The registers a d d r, opcode have the same semantics
as in req_sync instruction.
4.1.1. Memory Consistency. We design S yn C ro n assuming
a relaxed consistency memory model. The proposed ISA
extensions act as memory fences. First, req_sync, commits
once a message (ACK) is received (from the local SE to the
core), which ensures that all following instructions will be
issued after req_sync has been completed. Its semantics is
similar to those of the SYNC and ACQUIRE operations of
Weak Ordering (WO) [28] and Release Consistency (RC) [28]
models, respectively. Second, req_async, does not require
a return message (ACK). It is issued once all previous in­
structions are completed. Its semantics is similar to that of
the RELEASE operation of RC [28]. In the case of WO,
req_sync is sufficient. In the case of RC, the req_sync instruc­
tion is used for acquire-type semantics, i.e., lock_acquire, bar-
rier_wait, semaphore_wait and condition_variable_wait, while
the req_async instruction is used for release-type semantics,
i.e., lock_release, semaphore_post, condition_variable_signal,
and condition_variable_broadcast.
4.1.2. Message Encoding. Figure 5 describes the encoding of
the message used for communication between NDP cores and
the SE. Each message includes: (i) the 64-bit address of the
synchronization variable, (ii) the message opcode that imple­
ments the semantics of the different synchronization primitives
(6 bits cover all message opcodes), (iii) the unique ID number
of the NDP core (6 bits are sufficient for our simulated NDP
system in Section 5), and (iv) a 64-bit field (M essage In fo) that
communicates specific information needed for each different
synchronization primitive, i.e., the number of the cores that
participate in a barrier, the initial value of a semaphore, the
address of the lock associated with a condition variable.

64 bits 6 bits 6 bits 64 bits

[~ Address Opcode | CoreID | MessageInfo

Message Encoding

Figure 5: Message encoding of SynCron.

Hierarchical Message Opcodes. S yn C ro n enables a hierar­
chical scheme, where the SEs of NDP units communicate
with each other to coordinate synchronization at a global level.
Therefore, we support two types of messages (Table 3): (i)
lo c a l, which are used by NDP cores to communicate with their
local SE, and (ii) g lo b a l, which are used by SEs to commu­
nicate with the M a s te r SE, and vice versa. Since we support
two types of barriers (Table 2), we design two message op­
codes for a lo c a l barrier_wait message sent by an NDP core to
its local SE: (i) b a r r ie r_ w a it_ lo c a l_ w ith in _ u n it is used when
cores of a single NDP unit participate in the barrier, and (ii)
b a rr ie r_ w a it_ lo c a l_ a c ro s s _ u n its is used when cores from dif­
ferent NDP units participate in the barrier. In the latter case,
if a s m a lle r number of cores than the total a v a ila b le cores of
the NDP system participate in the barrier, S ynC ron supports
one-level communication: local SEs re-direct all messages
(received from their local NDP cores) to the M a s te r SE, which
globally coordinates the barrier among a l l participating cores.
This design choice is a trade-off between performance (m ore
rem ote m essages) and hardware/ISA complexity, since the

Lock

Barrier Initia l #Cores

Semaphore In itial #Resources

Condition Variable Lock Address

number of participating cores of each NDP unit would need to
be communicated to the hardware through additional registers
in ISA, and message opcodes (h ig h e r co m p le x ity).

Primitives SynCron Message Opcodes

Locks
lock_acquire_global, lock_acquire_local, lock_release_global

lock_release_local, lock_grant_global, lock_grant_local
lock_acquire_overflow, lock_release_overflow, lock_grant_overflow

Barriers
barrier_wait_global, ba rrie r_w a it_ loca l_w ith in_unit

barrier_wait_local_across_units, barrier_depart_global, barrier_depart_local
barrier_wait_overflow , barrier_departure_overflow

Semaphores
sem _wait_global, sem _wait_local, sem_grant_global
sem_grant_local, sem_post_global, sem_post_local

sem_wait_overflow, sem_grant_overflow, sem _post_overflow

Condition
Variables

cond_wait_g loba l, cond_wait_local, cond_signal_global
cond_signal_local, cond_broad_global, cond_broad_local
cond_grant_global, cond_grant_local, cond_wait_overflow

cond_signal_overflow , cond_broad_overflow, cond_grant_overflow
Other decrease_indexing_counter

Table 3: Message opcodes of SynCron.
4.2. Synchronization Engine (SE)

Each SE module (Figure 6) is integrated into the compute
die of each NDP unit. An SE consists of th ree components:
4.2.1. Synchronization Processing Unit (SPU). The SPU is
the logic that handles the messages, updates the ST, and issues
requests to memory as needed. The SPU includes the control
unit, a buffer, and a few registers. The buffer is a small SRAM
queue for temporarily storing messages that arrive at the SE.
The control unit implements custom logic with simple logical
bitwise operators (and, or, xor, zero) and multiplexers.

Network

SPU

^ Registers < *

Control
¡(Buffer Logic

DATA

Indexing
Counters

Figure 6: The Synchronization Engine (SE).

SE
INDEX

ENABLE

READ/WRITE

140 bits

4.2.2. Synchronization Table (ST). ST keeps track of all the
information needed to coordinate synchronization. Each ST
has 64 entries. Figure 7 shows an ST entry, which includes: (i)
the 64-bit address of a synchronization variable, (ii) the global
waiting list used by the M a s te r SE for global synchronization
among SEs, i.e., a hardware bit queue including one bit for
each SE of the system, (iii) the local waiting list used by all
SEs for synchronization among the NDP cores of an NDP
unit, i.e., a hardware bit queue including one bit for each NDP
core within the unit, (iv) the state of the ST entry, which can
be either f r e e or o c cu p ie d , and (v) a 64-bit field (T a b le In fo)
to track specific information needed for each synchronization
primitive. For the lock primitive, the T a b le In fo field is used
to indicate the lock owner that is either an SE of an NDP unit
(G lo b a l ID represented by the most significant bits) or a lo c a l
NDP core (L o c a l ID represented by the least significant bits).
We assume that all NDP cores of an NDP unit have a unique
lo c a l ID within the NDP unit, while all SEs of the system have
a unique g lo b a l ID within the system. The number of bits in
the global and local waiting lists of Figure 7 is specific for
the configuration of our evaluated system (Section 5), which
includes 16 NDP cores per NDP unit and 4 SEs (one per
NDP unit), and has to be extended accordingly, if the system
supports more NDP cores or SEs.

64 bits 4 bits 16 bits 1 bits 64 bits

Figure 7: Synchronization Table (ST) entry.
4.2.3. Indexing Counters. If an ST is full, i.e., all its entries
are in o c c u p ie d state, S ynC ron cannot keep track of informa­
tion for a new synchronization variable in ST. We use the
main memory as a fallback solution for such ST overflow

Waitlist Waitlist

Synchronization Table Entry

Global Local
Address TableInfoState

Lock Global ID | Local ID

Barrier Current #Cores

Semaphore Available #Resources

Condition Variable Lock Address

267

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

(Section 4.3). The SE keeps track of w h ic h synchronization
variables are currently serviced via main memory: similar to
MiSAR [97], we include a small set of counters (in d e x in g
counte rs), 256 in current implementation, indexed by the least
significant bits of the address of a synchronization variable,
as extracted from the message that arrives at an SE. When
an SE receives a message with acquire-type semantics for a
synchronization variable and there is no corresponding en­
try in the fu l ly -o c c u p ie d ST, the indexing counter for that
synchronization variable increases. When an SE receives a
message with release-type semantics for a synchronization
variable that is currently serviced using main memory, the
corresponding indexing counter decreases. A synchroniza­
tion variable is currently serviced via main memory, when
the corresponding indexing counter is larger than zero. Note
that different variables may alias to the same indexing counter.
This aliasing does not affect correctness, but it does affect
performance, since a variable may unnecessarily be serviced
via main memory, while the ST is n o t full.
4.2.4. Control Flow in SE. Figure 8 describes the control
flow in SE. When an SE receives a message, it decodes the
message o and accesses the ST CD.
for the specific variable (depending on its address), the SE
processes the waiting listsi d , updates the St C D, and encodes
return message(s*[5 , if needed. If there is n o t an ST entry
for the specific variable, the SE checks the value of the corre­
sponding indexing counter| 2bf: (i) if the indexing counter is
zero and the ST is not full, the SE reserves a new ST entry and
continues with step , otherwise (ii) if the indexing counter
is larger than zero o r the ST is full, there is an overflow. In
that case, if the SE is the M a s te r SE for the specific variable, it
reads the synchronization variable from lo c a l memory arrays
s c , esses the waiting lists @, updates the variable in main
memoryE M, and encodes return message(s)l 5 , if needed. If
the SE is n o t the M a s te r SE for the specific variable, it encodes
an o ve rflo w message to the M a s te r SE Cd to handle overflow.

t e " 11;. H ©* W aiting Lists
4* Update ST

ST Entry
> Not Found Zero Counter

Access Indexing
&& ST Not-Full

Non-Zero Counter
12b Counters 11 ST Full

- * E'

Incode Return
Message(s)

iRead Local Process W rite Local

Jr^W i t l r " "M em ory ^ w a it in g Lists

, Encode Overflow
' Message

Figure 8: Control flow in SE.
Overflow

4.3. Overflow Management
S ynC ron integrates a hardware-only overflow management

scheme that provides very modest performance degradation
(Section 6.7.3) and is programmer-transparent. To handle ST
overflow cases, we need to address two issues: (i) where to
keep track of required information to coordinate synchroniza­
tion, and (ii) how to coordinate ST overflow cases between
SEs. For the former issue, we design a generic structure al­
located in main memory. For the latter issue, we propose a
hierarchical o v e rflo w communication protocol between SEs.
4.3.1. S y n C ro n 's Synchronization Variable. We design a
generic structure (Figure 9), called syncronV ar, which is used
to coordinate synchronization for all supported primitives in
ST overflow cases. s y n c ro n V a r is defined in the driver of the
NDP system, which handles the allocation of the synchroniza­
tion variables: programmers use c re a te _ syn cva r() (Table 2)
to create a n ew synchronization variable, the driver allocates
the bytes needed for syncronV a r in main memory, and returns
an opaque pointer that points to the address of the variable.
Programmers should not de-reference the opaque pointer and
its content can o n ly be accessed via S ynC ron ’s API (Table 2).

syn c ro n V a r structure includes one waiting list for each SE
of the system, which has one bit for each NDP core within the

Lock Lock Owner

stru c t syncronV ar_ t { ^ Barrier Current #Cores
u in t1 6 _ t W aitMst[4];_ Semaphore Available #Resou rces
u in t6 4 t V a r In fo ; Condition Variable Lock Address
u in t8 t O v e rflo w In fo ;....................................

} Lock Overflow IDs |Lock State

ty p e d e f struct syncronV ar t syncronVar; Barrier Overflow IDs

Semaphore Overflow IDs

Condition Variable Overflow IDs

Figure 9: Synchronization variable of SynCron (syncronVar).
NDP unit, and two additional fields (V a rIn fo , O v e r flo w In fo)
needed to hierarchically handle ST overflows for all primitives.
4.3.2. Communication Protocol between SEs. To ensure
correctness, o n ly the M a s te r SE updates the syn c ro n V a r vari­
able: in ST overflow, the SPU of the M a s te r SE issues read
or write requests to its local memory to g lo b a l ly coordinate
synchronization via the syn c ro n V a r variable. In our proposed
hierarchical design, there are two overflow scenarios: (i) the
ST of the M a s te r SE overflows, and (ii) the ST of a local SE
overflows or STs of multiple local SEs overflow.
The ST of the M a s te r S E overflows. The other SEs of the
system have n o t overflowed for a specific synchronization vari­
able. Thus, they can still directly buffer this variable in their
local STs, and serve their local cores themselves, implement­
ing a hierarchical (two-level) communication with M a s te r SE.
The M a s te r SE receives g lo b a l messages from SEs, and serves
a local SE of an NDP unit using a l l bits in the waiting list of
the syncronV a r variable associated with that local SE. Specifi­
cally, when it receives a g lo b a l acquire-type message from a
local SE, it sets a l l bits in the corresponding waiting list of the
s y n c ro n V a r variable. When it receives a g lo b a l release-type
message from a local SE, it resets a l l bits in the corresponding
waiting list of the syn c ro n V a r variable.
The ST of a local SE overflows. In this scenario, there are
local SEs that have overflowed for a specific variable, and
local SEs that have n o t overflowed. Without loss of generality,
we assume that only one SE of the system has overflowed.
The local SEs that have n o t overflowed serve their local
cores themselves via their STs, implementing a hierarchical
(two-level) communication with M a s te r SE. When the M a s te r
SE receives a g lo b a l message from a local SE (that has n o t
overflowed), it (i) sets (or resets) a l l b its in the waiting list
of the s y n c ro n V a r variable associated with that SE, and (ii)
responds with a g lo b a l message to the local SE, if needed.

The overflowed SE needs to notify the M a s te r SE to han­
dle lo c a l synchronization requests of NDP cores located at
an o th e r NDP unit via main memory. We design ove rflo w mes­
sage opcodes (Table 3) to be sent from the local overflowed
SE to the M a s te r SE and back. The overflowed SE re-directs
all messages (sent from its local NDP cores) for a specific
variable to the M a s te r SE using the o ve rflo w message opcodes,
and both the overflowed SE and the M a s te r SE increase their
corresponding indexing counters to indicate that this variable
is currently serviced via memory. When the M a s te r S E re­
ceives an o ve rflo w message, it (i) sets (or resets) in the waiting
list (associated with the overflowed SE) of the syn c ro n V a r
variable, the bit that corresponds to the lo c a l ID of the NDP
core within the NDP unit, (ii) sets (or resets) in the O v e rflo w
In fo field of the syn c ro n V a r variable the bit that corresponds
to the g lo b a l ID of the overflowed SE to keep track of w h ich
SE (or SEs) of the system has overflowed, and (iii) responds
with an o v e rflo w message to that SE, if needed. The lo c a l ID
of the NDP core, and the g lo b a l ID of the overflowed SE are
encoded in the C o re ID field of the message (Figure 5). When
all bits in the waiting lists of the syn c ro n V a r variable become
zero (upon receiving a release-type message), the M a s te r SE
decrements the corresponding indexing counter. Then, it sends
a decrease_ index_counte r message (Table 3) to the overflowed
SE (based on the set bit that is tracked in the O v e rflo w In fo
field), which decrements its corresponding indexing counter.

268

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

4.4. SynCron Enhancements
4.4.1. R M W Operations. It is straightforward to extend Syn
C ro n to support simple atomic rm w operations inside the SE
(by adding a lightweight ALU). The M a s te r SE could be re­
sponsible for executing atomic rm w operations on a variable
depending on its address. We leave that for future work.
4.4.2. Lock Fairness. When local cores of an NDP unit re­
peatedly request a lock from their local SE, the SE repeatedly
grants the lock within its unit, potentially causing unfairness
and delay to other NDP units. To prevent this, an extra field
of a local grant counter could be added to the ST entry. The
counter increases every time the SE grants the lock to a local
core. If the counter exceeds a predefined threshold, then when
the SE receives a lock release, it transfers the lock to another
SE (assuming other SEs request the lock). The host OS or
the user could dynamically set this threshold via a dedicated
register. We leave the exploration of such fairness mechanisms
to future work.
4.5. Comparison with Prior Work

S y n C ro n ’s design shares some of its design concepts with
SSB [157], LCU [146], andMiSAR [97]. However, S ynC ron
is more general, supporting the four most widely-used synchro­
nization primitives, and easy-to-use thanks to its high-level
programming interface.

Table 4 qualitatively compares SynC ron with these schemes.
SSB and LCU support only lock semantics, thus they intro­
duce two IS A extensions for a simple lock. MiSAR introduces
seven ISA extensions to support three primitives and handle
overflow scenarios. S ynC ron includes two ISA extensions for
four s u p p o rte d p r im it iv e s . A s p in -w a it a p p ro a ch performs
consecutive synchronization retries, typically incurring high
energy consumption. A d ire c t n o t if ic a t io n scheme sends a
direct message to only one waiting core when the synchro­
nization variable becomes available, minimizing the traffic
involved upon a release operation. SSB, LCU and MiSAR are
tailored for u n ifo rm memory systems. In contrast, S ynC ron
is the o n ly hardware synchronization mechanism that targets
NDP systems as well as n o n -u n ifo rm memory systems.

SSB and LCU handle ove rflo w in hardware synchronization
resources using a pre-allocated table in main memory, and
if it overflows, they switch to software exception handlers
(handled by the programmer), which typically incur large
overheads (due to OS intervention) when overflows happen
at a non-negligible frequency. To avoid falling back to main
memory, which has high latency, and using expensive soft­
ware exception handlers, MiSAR requires the programmer to
handle overflow scenarios using alternative software synchro­
nization libraries (e.g., pthread library provided by the OS).
This approach can provide performance benefits in CPU sys­
tems, since alternative synchronization solutions can exploit
low-cost accesses to caches and hardware cache coherence.
However, in NDP systems alternative solutions would by de­
fault use main memory due to the absence of shared caches
and hardware cache coherence support. Moreover, when over­
flow occurs, MiSAR’s accelerator sends abort messages to
all participating CPU cores notifying them to use the alter­
native solution, and when the cores finish synchronizing via
the alternative solution, they notify MiSAR’s accelerator to
switch back to hardware synchronization. This scheme intro­
duces additional hardware/ISA complexity, and communica­
tion between the cores and the accelerator, thus incurring high
network traffic and communication costs, as we show in Sec­
tion 6.7.3. In contrast, S ynC ron directly falls back to memory
via a fully-integrated hardware-only overflow scheme, which
provides graceful performance degradation (Section 6.7.3),
and is completely transparent to the programmer: program-

mers o n ly use S y n C ro n ’s high-level API, similarly to how
software libraries are in charge of synchronization.

SS B [157] L C U [146] M iS A R [9 7] SynCron

S upported P rim itiv e s 1 1 3 4

IS A E xtens ions 2 2 7 2

S p in -W a it A p p ro a c h yes yes no no

D ire c t N o ti f ic a t io n no yes yes yes

Target S ystem u n ifo rm u n ifo rm u n ifo rm non-uniform

O v e rf lo w p a r t ia lly p a r t ia lly ha n d le d b y fu lly
M a n age m en t in teg ra ted in teg ra ted p rog ram m er integrated

Table 4: Comparison of SynCron with prior mechanisms.
4.6. Use of SynCron in Conventional Systems

The baseline NDP architecture [8, 43, 143, 155, 158] we
assume in this work shares key design principles with con­
ventional NUMA systems. However, unlike NDP systems,
NUMA CPU systems (i) have a shared level of cache (within a
NUMA socket and/or across NUMA sockets), (ii) run multiple
multi-threaded applications, i.e., a high number of software
threads executed in hardware thread contexts, and (iii) the
OS migrates software threads between hardware thread con­
texts to improve system performance. Therefore, although
S yn C ro n could be implemented in such commodity systems,
our proposed hardware design would need extensions. First,
S ynC ron could exploit the low-cost accesses to sha red caches
in conventional CPUs, e.g., including an additional level in
S ynC ron 's hierarchical design to use the shared cache for effi­
cient synchronization within a NUMA socket, and/or handling
overflow scenarios by falling back to the low-latency cache
instead of main memory. Second, S ynC ron needs to support
use cases (ii) and (iii) listed above in such systems, i.e., in­
cluding larger STs and waiting lists to satisfy the needs of
multiple multithreaded applications, handling the OS thread
migration scenarios across hardware thread contexts, and han­
dling multiple synchronization requests sent from different
software threads with the same hardware ID to SEs, when
different software threads are executed on the same hardware
thread context. We leave the optimization of S ynC ron 's design
for conventional systems to future work.
5. Methodology
Simulation Methodology. We use an in-house simulator that
integrates ZSim [125] and Ramulator [85]. We model 4 NDP
units (Table 5), each with 16 in-order cores. The cores issue a
memory operation after the previous one has completed, i.e.,
there are no overlapping operations issued by the same core.
Any write operation is completed (and the latency is accounted
for in our simulations) before executing the next instruction.
To ensure memory consistency, compiler support [123] guar­
antees that there is no reordering around the sync instructions
and a read is inserted after a write inside a critical section.
NDP Cores 16 in-order cores @2.5 GHz per NDP unit
L1 Data + Inst. Cache private, 16KB, 2-way, 4-cycle; 64 B line; 23/47 pJ per hit/miss [109]
NDP Unit
Local Network

buffered crossbar network with packet flow control; 1-cycle arbiter;
1-cycle per hop [6]; 0.4 pJ/bit per hop [149];
M/D/1 model [18] for queueing latency;

DRAM HBM 4 stacks; 4GB HBM 1.0 [92,93]; 500MHz with 8 channels;
nRCDR/nRCDW/nRAS/nWR 7/6/17/8 ns [47,85]; 7 pJ/bit [151]

DRAM HMC 4 stacks; 4GB HMC 2.1; 1250MHz; 32 vaults per stack;
nRCD/nRAS/nWR 17/34/19 ns [47,85]

DRAM DDR4 4 DIMMs; 4GB each DIMM DDR4 2400MHz;
nRCD/nRAS/nWR 16/39/18 ns [47,85]

Interconnection Links
Across NDP Units

12.8GB/s per direction; 40 ns per cache line;
20-cycle; 4 pJ/bit

Synchronization
Engine

SPU @1GHz clock frequency [129]; 8 x 64-bit registers;
buffer: 280B; ST: 1192B, 64 entries, 1-cycle [109];
indexing counters: 2304B, 256 entries (8 LSB of the address), 2-cycle [109]

Table 5: Configuration of our simulated system.
We evaluate three NDP configurations for different mem­

ory technologies, namely 2D, 2.5D, 3D NDP. The 2D NDP
configuration uses a DDR4 memory model and resembles
recent 2D NDP systems [34,50,89, 144]. In the 2.5D NDP

269

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

configuration, each compute die of NDP units (16 NDP cores)
is connected to an HBM stack via an interposer, similar to
current GPUs [106, 115] and FPGAs [131, 150]. For the 3D
NDP configuration, we use the HMC memory model, where
the compute die of the NDP unit is located in the logic layer
of the memory stack, as in prior works [8, 19, 155, 158]. Due
to space limitations, we present detailed evaluation results for
the 2.5D NDP configuration, and provide a sensitivity study
for the different NDP configurations in Section 6.5.

We model a crossbar network within each NDP unit, sim­
ulating queuing latency using the M/D/1 model [18]. We
count in ZSim-Ramulator all events for caches, i.e., num­
ber of hits/misses, network, i.e., number of bits transferred
inside/across NDP units, and memory, i.e., number of total
memory accesses, and use CACTI [109] and parameters re­
ported in prior works [143, 149, 151] to calculate energy. To
estimate the latency in SE, we use CACTI for ST and indexing
counters, and Aladdin [129] for the SPU with 1GHz at 40nm.
Each message is served in 12 cycles, corresponding to the
message (barrier_depart_global) that takes the longest time.
Workloads. We evaluate workloads with both (i) coarse­
grained synchronization, i.e., including only a few synchro­
nization variables to protect shared data, leading to cores
highly contending for them (h ig h -c o n te n tio n) , and (ii) fine­
grained synchronization, i.e., including a large number of syn­
chronization variables, each of them protecting a small granu­
larity of shared data, leading to cores not frequently contend­
ing for the same variables at the same time (lo w -c o n te n tio n).
We use the term s yn ch ro n iza tio n in te n s ity to refer to the ratio
of synchronization operations over other computation in the
workload. As this ratio increases, synchronization latency
affects the total execution time of the workload more.

We study three classes of applications (Table 6), all well
suited for NDP. First, we evaluate pointer chasing workloads,
i.e., lock-based concurrent data structures from the ASCYLIB
library [31], used as key-value sets. In ASCYLIB’s Binary
Search Tree (BST) [37], the lock memory requests are only
0.1% of the total memory requests, so we also evaluate an
external fine-grained locking BST from [130]. Data structures
are initialized with a fixed size and statically partitioned across
NDP units, except for BSTs, which are distributed randomly.
In these benchmarks, each core performs a fixed number of
operations. We use lookup operations for data structures that
support it, deletion for the rest, and push and pop operations
for stack and queue. Second, we evaluate graph applications
with fine-grained synchronization from Crono [7,65] (push
version), where the output array has read-write data. All real-
world graphs [32] used are undirected and statically partitioned
across NDP units, where the vertex data is equally distributed
across cores. Third, we evaluate time series analysis [142],
using SCRIMP, and re a l data sets from Matrix Profile [152].
We replicate the input data in each NDP unit and partition the
output array (read-write data) across NDP units.
Comparison Points. We compare S yn C ro n with three
schemes: (i) C en tra l: a message-passing scheme that supports
all primitives by extending the barrier primitive of Tesser-
act [8], i.e., one dedicated NDP core in the entire NDP system
acts as server and coordinates synchronization among all NDP
cores of the system by issuing memory requests to synchro­
nization variables via its memory hierarchy, while the remain­
ing client cores communicate with it via hardware message­
passing; (ii) H ie r : a hierarchical message-passing scheme that
supports all primitives, similar to the barrier primitive of [43]
(or hierarchical lock of [141]), i.e., one NDP core per NDP
unit acts as server and coordinates synchronization by issuing
memory requests to synchronization variables via its memory
hierarchy (including caches), and communicates with other

Data Structure Configuration

Stack [31] 100K-100% push
Queue [31,104] 100K -100% pop
Array Map [31,56] 10 -100% lookup
Priority Queue [11,31,118] 20K -100% deleteMin
Skip List [31,118] 5K -100% deletion
Hash Table [31,63] 1K-100% lookup
Linked List [31,63] 20K-100% lookup
Binary Search Tree Fine-Grained (BST_FG) [130] 20K-100% lookup
Binary Search Tree Drachsler (BST_Drachsler) [31,37] 10K -100% deletion

Real Application Locks Barriers Real Application InputData Set

Breadth First Search (bfs) [7] / / wikipedia
Connected Components (cc) [7] s s -20051105 (wk)
Single Source Shortest Paths (sssp) [7] / s bfs, cc, sssp, soc-LiveJournal1 (sl)
Pagerank (pr) [7] / s pr, tf, tc sx-stackoverflow (sx)
Teenage Followers (tf) [65] / com-Orkut (co)
Triangle Counting (tc) [7] s s air quality (air)
Time Series Analysis (ts) [152] s s energy consumption (pow)

Table 6: Summary of all workloads used in our evaluation.
servers and local client cores (located at the same NDP unit
with it) via hardware message-passing; (iii) Id e a l: an ideal
scheme with zero performance overhead for synchronization.
In our evaluation, each NDP core runs one thread. For fair
comparison, we use the same number of client cores, i.e., 15
per NDP unit, that execute the main workload for all schemes.
For synchronization, we add one server core for the entire sys­
tem in C en tra l, one server core per NDP unit for H ie r , and one
SE per NDP unit for S ynC ron . For S ynC ron , we disable one
core per NDP unit to match the same number of client cores
as the previous schemes. Maintaining the same thread-level
parallelism for executing the main kernel is consistent with
prior works on message-passing synchronization [97, 141].
6. Evaluation
6.1. Performance
6.1.1. Synchronization Primitives. Figure 10 evaluates all
supported primitives using 60 cores, varying the interval (in
terms of instructions) between two synchronization points.
We devise simple benchmarks, where cores repeatedly re­
quest a single synchronization variable. For lock, the crit­
ical section is empty, i.e., it does not include any instruc­
tion. For semaphore and condition variable, half of the
cores execute sem_wait/cond_wait, while the rest execute
sem_post/cond_signal, respectively. As the interval between
synchronization points becomes smaller, S y n C ro n ’s perfor­
mance benefit increases. For an interval of 200 instructions,
S ynC ron outperforms C e n tra l and H ie r by 3.05x and 1.40x
respectively, averaged across all primitives. S ynC ron outper­
forms H ie r due to directly buffering synchronization variables
in low-latency STs, and achieves the highest benefits in the
condition variable primitive (by 1.61 x), since this benchmark
has higher synchronization intensity compared to the rest:
cores coordinate for both the condition variable and the lock
associated with it. When the interval between synchronization
operations becomes larger, synchronization requests become
less dominant in the main workload, and thus all schemes per­
form similarly. Overall, S ynC ron outperforms prior schemes
for all different synchronization primitives.

I» ~ l Central I I Hier
5i----
4----

Lock

i d t | r f
“ so 10

_ 7 L
200

I rii I m I m I m
400 1K 2K SK

Instructions between
critical sections

SynCron I I Ideal
8i-----

6
Barrier

; f l
“ TfIH _n

« 2 0
TÌ3

SO
J_J

10
l l l i M h l i w
200 500 1K 2K

Instructions between
barrier synchronization

3

n Semaphore

I r 1 n

7
° i

u
30 20

J
0 40<

1 1
1K 2K

Ì Ì
SK 10K

Instructions between
semaphore synchronization

r Condition Variable

7
7

200 400 1K 2K SK 10K 5<
Instructions between

condition variable synchronization

15

Figure 10: Speedup of different synchronization primitives.

270

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

6.1.2. Pointer Chasing Data Structures. Figure 11 shows
the throughput for all schemes in pointer chasing varying the
NDP cores in steps of 15, each time adding one NDP unit.

Central Hier SynCron -+ � Ideal

Number oF NDP cores

Figure 11: Throughput of pointer chasing using data structures.
We observe four different patterns. First, stack, queue,

a r ra y m ap, and p r io r i t y queue incur high contention, as all
cores heavily contend for a few variables. A r ra y m ap has
the lowest scalability due to a larger critical section. In high­
contention scenarios, hierarchical schemes (H ie r , S ynC ron)
perform better by reducing the expensive traffic across NDP
units. S ynC ron outperforms H ie r , since the latency cost of
using SEs that update small STs is lower than using NDP cores
as servers that update larger caches. Second, skip l is t and hash
tab le incur medium contention, as different cores may work on
different parts of the data structure. For these data structures,
hierarchical schemes perform better, as they minimize the
expensive traffic, and multiple server cores concurrently serve
requests to their local memory. S yn C ro n retains most of the
performance benefits of Id e a l, incurring only 19.9% overhead
with 60 cores, and outperforms H ie r by 9.8%. Third, lin ke d lis t
and B S T _ F G exhibit low contention and high synchronization
demand, as each core requests multiple locks concurrently.
These data structures cause higher synchronization-related
traffic inside the network compared to sk ip l is t and hash tab le ,
and thus S ynC ron further outperforms H ie r by 1.19 x due to
directly buffering synchronization variables in STs. Fourth,
in B S T _ D ra c h s le r lock requests constitute only 0.1% of the
total requests, and all schemes perform similarly. Overall, we
conclude that S ynC ron achieves higher throughput th a n p r io r
m echanism s under different scenarios with diverse conditions.

6.1.3. Real Applications. Figure 12 shows the performance
of all schemes with real applications using all NDP units,
normalized to C e n tra l. Averaged across 26 application-input
combinations, S ynC ron outperforms C e n tra l by 1.47 x and
H ie r by 1.23x, and performs within 9.5% of Id e a l.

Our real applications exhibit low contention, as two cores
rarely contend for the same synchronization variable, and high
synchronization demand, as several synchronization variables
are active during execution. We observe that H ie r and S yn
C ro n increase parallelism, because the per-NDP-unit servers
service different synchronization requests concurrently, and
avoid remote synchronization messages across NDP units.
Even though H ie r performs 1.19 x better than C e n tra l, on
average, its performance is still 1.33 x worse than Id e a l. Syn
C ron provides most of the performance benefits of Id e a l (with
only 9.5% overhead on average), and outperforms H ie r due
to directly buffering the synchronization variables in STs,
thereby completely avoiding the memory accesses for syn­
chronization requests. Specifically, we find that tim e se ries
an a lys is has high synchronization intensity, since the ratio of
synchronization over other computation of the workload is
higher compared to graph workloads. For this application,
H ie r and S ynC ron outperform C e n tra l by 1.64 x and 2.22 x,
as they serve multiple synchronization requests concurrently.
S ynC ron further outperforms H ie r by 1.35 x due to directly
buffering the synchronization variables in STs. We conclude
that S yn C ro n performs best across a l l real application-input
combinations and approaches the Id e a l scheme with no syn­
chronization overhead.
Scalability. Figure 13 shows the scalability of real applica­
tions using S yn C ro n from 1 to 4 NDP units. Due to space
limitations, we present a subset of our workloads, but we re­
port average values for all 26 application-input combinations.
This also applies for all figures presented henceforth. Across
all workloads, S yn C ro n enables performance scaling by at
least 1.32x, on average 2.03x, and up to 3.03x, when using
4 NDP units (60 NDP cores) over 1 NDP unit (15 NDP cores).

1 NDP unit 2 NDP units 3 NDP units 4 NDP units

bFs.sl ccsx sssp.co pr.wk tF.sl tcsx ts.air ts.pow AVG

Figure 13: Scalability of real applications using SynCron.

6.2. Energy Consumption
Figure 14 shows the energy breakdown for cache, network,

and memory in our real applications when using all cores.
SynCron reduces the network and memory energy thanks to its
hierarchical design and direct buffering. On average, SynCron
reduces energy consumption by 2.22x over C e n tra l and 1.94x
over H ie r , and incurs only 6.2% energy overhead over Id e a l.

We observe that 1) cache energy consumption constitutes
a small portion of the total energy, since these applications
have irregular access patterns. n Dp cores that act as servers

Figure 12: Speedup in real applications normalized to Central.

271

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

S 0.8
3 0.6
m 0.4

ra 0.2
g 0.0 CHSCI CHSCI CHSCI CHSCI C HSCI CHSCI C HSCI CHSCI C HSCI

bFs.sl ccsx sssp.co pr.w k tF.sl tc.sx ts .a ir ts.pow AVC

Figure 14: Energy breakdown in real applications for C: Central,
H: Hier, SC: SynCron and I: Ideal.
for C e n tra l and H ie r increase the cache energy only by 5.1%
and 4.8% over Id e a l. 2) C e n tra l generates a larger amount
of expensive traffic across NDP units compared to hierarchi­
cal schemes, resulting in 2.68 x higher network energy over
SynC ron. S ynC ron also has less network energy (1.21 x) than
H ie r , because it avoids transferring synchronization variables
from memory to SEs due to directly buffering them. 3) H ie r

and C e n tra l have approximately the same memory energy con­
sumption, because they issue a similar number of requests to
memory. In contrast, S ynC ron ’s memory energy consumption
is similar to that of Id e a l. We note that S ynC ron provides
h ig h e r energy reductions in applications with high synchro­
nization intensity, such as time series analysis, since it avoids
a h ig h e r number of memory accesses for synchronization due
to its direct buffering capability.
6.3. Data Movement

Figure 15 shows normalized data movement, i.e., bytes
transferred between NDP cores and memory, for all schemes
using four NDP units. SynC ron reduces data movement across
all workloads by 2.08 x and 2.04 x over C e n tra l and H ie r ,
respectively, on average, and incurs only 13.8% more data
movement than Id e a l. C e n tra l generates high data movement
across NDP units, particularly when running time series anal­
ysis that has high synchronization intensity. H ie r reduces the
traffic across NDP units; however, it may increase the traffic
inside an NDP unit, occasionally leading to slightly higher to­
tal data movement (e.g., ts .a ir) . This is because when an NDP
core requests a synchronization variable that is physically lo­
cated in another NDP unit, it first sends a message inside the
NDP unit to its local server, which in turns sends a message
to the global server. In contrast, S yn C ro n reduces the traffic
inside an NDP unit due to directly buffering synchronization
variables, and across NDP units due to its hierarchical design.

inside NDP units across NDP units
g 1.0
3 0.8
g 0.6
S OA
2 0.2
2 0.0û CHSCI

bFs.sl
CHSCI CHSCI CHSCI CHSCI
cc.sx sssp.co pr.w k tF.sl

CHSCI CHSCI CHSCI CHSCI
tc .sx ts .a ir ts.pow AVC

Figure 15: Data movement in real applications for C: Central,
H: Hier, SC: SynCron and I: Ideal.

6.4. Non-Uniformity of NDP Systems
6.4.1. High Contention. Hierarchical schemes provide high
benefit under high contention, as they prioritize local requests
inside each NDP unit. We study their performance benefit in
stack and priority queue (Figure 16) when varying the transfer
latency of the interconnection links used across four NDP units.
C e n tra l is significantly affected by the interconnect latency
across NDP units, as it is oblivious to the non-uniform nature
of the NDP system. Observing Id e a l, which reflects the actual
behavior of the main workload, we notice that after a certain
point (vertical line), the cost of remote memory accesses across
NDP units become high enough to dominate performance.
S yn C ro n and H ie r tend to follow the actual behavior of the
workload, as local synchronization messages within NDP units

are much less expensive than remote messages of C e n tra l.
S ynC ron outperforms H ie r by 1.06 x and 1.04 x for stack and
priority queue. We conclude that SynCron is the best at hiding
the latency of slow links across NDP units.

14
3.12

.ip
<D 6

ê t
0,

Central
Stack

SynCron Ideal

0.040.1 0.2 0.5 1 2 4.5 9
TransFer latency (|as)

Priority Queue

0.040.1 0.2 0.5 1 2 4.5 9
TransFer la tency (ps)

Hier

Figure 16: Performance sensitivity to the transfer latency of the
interconnection links used to connect the NDP units.

6.4.2. Low Contention. We also study the effect of intercon­
nection links used across the NDP units in a low-contention
graph application (Figure 17). Observing Id e a l, with 500 ns
transfer latency per cache line, we note that the workload ex­
periences 2.46 x slowdown over the default latency of 40 ns,
as 24.1% of its memory accesses are to remote NDP units.
As the transfer latency increases, C e n tra l incurs significant
slowdown over Id e a l, since all NDP cores of the system com­
municate with one single server, generating expensive traffic
across NDP units. In contrast, the slowdown of hierarchi­
cal schemes over Id e a l is smaller, as these schemes generate
less remote traffic by distributing the synchronization requests
across multiple local servers. S ynC ron outperforms H ie r due
to its direct buffering capabilities. Overall, S yn C ro n outper­
forms prior high-performance schemes even when the network
delay across NDP units is large.

Ideal
SynCron
Hier
Central

4 0 . 10Q 500
TransFer latency in ns For each cache line

Figure 17: Performance sensitivity to the transfer latency of the
interconnection links used to connect the NDP units. All data is
normalized to Ideal (lower is better).

6.5. Memory Technologies
We study three memory technologies, which provide differ­

ent memory access latencies and bandwidth. We evaluate (i)
2.5D NDP using HBM, (ii) 3D NDP using HMC, and (iii) 2D
NDP using DDR4. Figure 18 shows the performance of all
schemes normalized to C e n tra l of each memory. The reported
values show the speedup of S yn C ro n over C e n tra l and H ie r .
S ynC ron ’s benefit is independent of the memory used: its per­
formance versus Id e a l only slightly varies (±1.4%) across dif­
ferent memory technologies, since STs never overflow. More­
over, S ynC ron ’s performance improvement over prior schemes
increases as the memory access latency becomes higher thanks
to direct buffering, which avoids expensive memory accesses
for synchronization. For example, in ts .pow , S yn C ro n out­
performs H ie r by 1.41 x and 2.49 x with HBM and DDR4,
respectively, as the latter incurs higher access latency. Overall,
S ynC ron is orthogonal to the memory technology used.

Ideal

HBM HMC DDR4 HBM HMC DDR4 HBM HMC DDR4
cc.wk pr.wk ts.pow

Figure 18: Speedup with different memory technologies.

272

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

6.6. Effect of Data Placement
Figure 19 evaluates the effect of better data placement on

S ynC ron ’s benefits. We use Metis [74] to obtain a 4-way graph
partitioning to minimize the crossing edges between the 4
NDP units. All data values are normalized to C e n tra l without
Metis. For S ynC ron , we define ST occupancy as the average
fraction of ST entries that are occupied in each cycle.

Max ST Occupancy (%) pr.wk pr.sl pr.sx pr.co

No Metis 62 51 53 48

Metis 39 29 38 34

Figure 19: Performance sensitivity to a better graph partitioning
and maximum ST occupancy of SynCron.
We make three observations. First, Id e a l, which reflects the
actual behavior of the main kernel (i.e., with zero synchroniza­
tion overhead), improves performance by 1.47 x across the
four graphs. Second, with a better graph partitioning, SynCron

still outperforms both C e n tra l and H ie r . Third, we find that
ST occupancy is lower with a better graph partitioning. When
a local Se receives a request for a synchronization variable
of another NDP unit, b o th the local SE and the M a s te r SE
reserve a new entry in their STs. With a better graph parti­
tioning, NDP cores send requests to their local SE, which is
also the M a s te r S E for the requested variable. Thus, o n ly one
SE of the system reserves a new entry, resulting in a lower
ST occupancy. We conclude that, with better data placement
SynC ron still performs the best while achieving even lower ST
occupancy.
6.7. SynCron’s Design Choices
6.7.1. Hierarchical Design. To demonstrate the effectiveness
of S ynC ron ’s hierarchical design in non-uniform NDP systems,
we compare it with S y n C ro n ’s f l a t variant. Each core in f l a t
d ire c t ly sends all its synchronization requests to the M a s te r
S E of each variable. In contrast, each core in S ynC ron sends
all its synchronization requests to the local SE. If the local SE
is n o t the M a s te r S E for the requested variable, the local SE
sends a message across NDP units to the M a s te r SE.

We evaluate three synchronization scenarios: (i) low-
contention and synchronization non-intensive (e.g., graph ap­
plications), (ii) low-contention and synchronization-intensive
(e.g., time series analysis), and (iii) high-contention (e.g.,
queue data structure).
Low-contention and synchronization non-intensive. Fig­
ure 20 evaluates this scenario using several graph process­
ing workloads with 40 ns link latency between NDP units.
S ynC ron is 1.1% worse than f la t , on average. We conclude
that S yn C ro n performs only s lig h t ly worse than f l a t for low-
contention and synchronization non-intensive scenarios.

Figure 20: Speedup of SynCron normalized to flat with 40 ns link
latency between NDP units, under a low-contention and synchro­
nization non-intensive scenario.

Low-contention and synchronization-intensive. Figure 21a
evaluates this scenario using time series analysis with four

different link latency values between NDP units. S ynC ron
performs 7.3% worse than f l a t with a 40 ns inter-NDP-unit
latency. With a 500 ns inter-NDP-unit latency, S ynC ron per­
forms o n ly 3.6% worse than f la t , since remote traffic has a
larger impact on the total execution time. We conclude that
S ynC ron performs modestly worse than f la t , and S y n C ro n ’ s
slowdown decreases as non-uniformity, i.e., the latency be­
tween NDP units, increases.

1.00
�f 0.95
3 0.90
«0.85

0.80 ts.pow

(b)------------------ p

m i
Queue30cores Queue.60cores

200 ns 500 ns

c&air

Figure 21: Speedup of SynCron normalized to flat, as we vary
the transfer latency of the interconnection links used to con­
nect NDP units, under (a) a low-contention and synchronization­
intensive scenario using 4 NDP units, and (b) a high-contention
scenario using 2 and 4 NDP units.
High-contention. Figure 21b evaluates this scenario using a
queue data structure with four different link latency values
between NDP units, for 30 and 60 NDP cores. S ynC ron with
30 NDP cores outperforms f l a t from 1.23 x to 1.76 x, as the
inter-NDP-unit latency increases from 40 ns to 500 ns (i.e.,
with increasing non-uniformity in the system). In a scenario
with high non-uniformity in the system and large number of
contended cores, e.g., using a 500 ns inter-NDP-unit latency
and 60 NDP cores, S y n C ro n ’s benefit increases to a 2.14 x
speedup over f la t . We conclude that S ynC ron performs s ig n if i
c a n tly better than f l a t under high-contention.

Overall, we conclude that in n o n -u n ifo rm , d is tr ib u te d NDP
systems, o n ly a h ie ra rc h ic a l hardware synchronization design
can achieve high performance under a l l various scenarios.
6.7.2. ST Size. We show the effectiveness of the proposed 64-
entry ST (per NDP unit) using real applications. Table 7 shows
the measured occupancy across all STs. Figure 22 shows the
performance sensitivity to ST size. In graph applications,
the average ST occupancy is low (2.8%), and the 64-entry
ST never overflows: maximum occupancy is 63% (c c .w k).
In contrast, time series analysis has higher ST occupancy
(reaching up to 89% in ts .pow) due to the high synchronization
intensity, but there are no ST overflows. Even a 48-entry ST
overflows for only 0.01% of synchronization requests, and
incurs 2.1% slowdown over a 64-entry ST. We conclude that
the proposed 64-entry ST meets the needs of applications that
have high synchronization intensity.

ST Occupancy Max (%) Avg(%) ST Occupancy Max (%) Avg (%)

bfs.wk 51 1.33 pr.sl 51 2.27
bfs.sl 59 1.49 pr.sx 53 2.46
bfs.sx 51 3.24 pr.co 48 4.72
bfs.co 55 6.09 tf.wk 62 1.44
cc.wk 63 1.27 tf.sl 53 2.21
cc.sl 61 2.16 tf.sx 50 2.99
cc.sx 48 2.43 tf.co 48 4.61
cc.co 46 4.53 tc.wk 62 1.26
sssp.wk 62 1.18 tc.sl 48 2.08
sssp.sl 54 2.08 tc.sx 50 2.77
sssp.sx 50 2.20 tc.co 51 4.52
sssp.co 48 5.23 ts.air S4 44.20
pr.wk 62 4.27 ts.pow 89 43.51

Table 7: ST occupancy in real applications.

Figure 22: Slowdown with varying ST size (normalized to 64-
entry ST). Numbers on top of bars show the percentage of over­
flowed requests.

273

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

6.7.3. Overflow Management. The linked list and BST_FG
data structures are the o n ly cases where the proposed 64-entry
ST overflows, when using 60 cores, for 3.1% and 30.5% of
the requests, respectively. This is because each core requests
at least two locks a t the same tim e during the execution. Note
that these synthetic benchmarks represent extreme scenarios,
where all cores repeatedly perform key-value operations.

Figure 23 compares BST_FG ’ s performance with S ynC ron ’s
integrated overflow scheme versus with a non-integrated
scheme as in MiSAR. When overflow occurs, MiSAR ’ s ac­
celerator aborts all participating cores notifying them to use
an alternative synchronization library, and when the cores
finish synchronizing via an alternative solution, they notify
MiSAR ’ s accelerator to switch back to hardware synchro­
nization. We adapt this scheme to S yn C ro n for comparison
purposes: when an ST overflows, SEs send abort messages
to NDP cores with a hierarchical protocol, notifying them
to use an alternative synchronization solution, and after fin­
ishing synchronization they notify SEs to decrease their in­
dexing counters and switch to hardware. We evaluate two
alternative solutions: (i) S y n C ro n _ C e n tra lO v rfl, where one
dedicated NDP core handles all synchronization variables,
and (ii) S yn C ro n _ D is tr ib O v rfl, where one NDP core per NDP
unit handles variables located in the same NDP unit. With
30.5% overflowed requests (i.e., with a 64-entry ST), Syn-
C ro n _ C e n tra lO v r f l and S y n C ro n _ D is tr ib O v r f l incur 12.3%
and 10.4% performance slowdown compared to with no ST
overflow, due to high network traffic and communication costs
between NDP cores and SEs. In contrast, SynCron affects per­
formance by only 3.2% compared to with no ST overflow. We
conclude that S y n C ro n ’s integrated hardware-only overflow
scheme enables very small performance overhead.

BST_FG
23% 0%

SynCron
7.5

7.0

6.5

6.0

416% » È » ------ - ---------- *
T T A % ^ ^ -* - -------- 1 Syn Cro n_Ce nt ralO vrFl

—A— Syn Cro n_D Is tri bO vrFl

ST_16 ST_32 ST_48 ST_64 ST.128 ST_256

Figure 23: Throughput achieved by BST_FG using different
overflow schemes and varying the ST size. The reported num­
bers show to the percentage of overflowed requests.

6.8. SynCron’s Area and Power Overhead
Table 8 compares an SE with the ARM Cortex A7 core [14].

We estimate the SPU using Aladdin [129], and the ST and
indexing counters using CACTI [109]. We conclude that our
proposed hardware unit incurs very modest area and power
costs to be integrated into the compute die of an NDP unit.

SE (Synchronization Engine) A R M Cortex A7 [14]

Technology 40n m 28nm

Area
SPU: 0 .0141m m 2, ST: 0 .0112m m 2

Ind e x in g Counters: 0 .0208m m 2
3 2 K B L 1 Cache

Total: 0.0461m m 2 Total: 0 .45m m 2
Power 2.7 m W 100m W

Table 8: Comparison of SE with a simple general-purpose in­
order core, ARM Cortex A7.

7. Related Work
To our knowledge, our work is the first one to (i) compre­

hensively analyze and evaluate synchronization primitives in
NDP systems, and (ii) propose an end-to-end hardware-based
synchronization mechanism for efficient execution of such
primitives. We briefly discuss prior work.

Synchronization on NDP. Ahn et al. [8] include a message­
passing barrier similar to our C e n tra l baseline. Gao et al. [43]
implement a hierarchical tree-based barrier for HMC [59],
where cores first synchronize inside the vault, then across

vaults, and finally across HMC stacks. Section 6.1 shows
that S ynC ron outperforms such schemes. Gao et al. [43] also
provide remote atomics at the vault controllers of HMC. How­
ever, synchronization using remote atomics creates high global
traffic and hotspots [41,96, 108, 147, 153].

Synchronization on CPUs. A range of hardware synchro­
nization mechanisms have been proposed for commodity CPU
systems [1- 3,10,116,124]. These are not suitable for n Dp sys­
tems because they either (i) rely on the underlying cache coher­
ence system [10,124], (ii) are tailored for the 2D-mesh network
topology to connect all cores [2,3], or (iii) use transmission­
line technology [116] or on-chip wireless technology [1]. Call­
backs [120] includes a directory cache structure close to the
LLC of a CPU system built on self-invalidation coherence
protocols [26,75,77,91, 121, 139]. Although it has low area
cost, it would be oblivious to the non-uniformity of NDP,
thereby incurring high performance overheads under high con­
tention (Section 6.7.1). Callbacks improves performance of
spin-wait in hardware, on top of which high-level primitives
(locks/barriers) are implemented in software. In contrast, Syn
C ron directly supports high-level primitives in hardware, and
is tailored to all salient characteristics of NDP systems.

The closest works to ours are SSB [157], LCU [146], and
MiSAR [97]. SSB, a shared memory scheme, includes a small
buffer attached to each controller of LLC to provide lock se­
mantics for a given data address. LCU, a message-passing
scheme, incorporates a control unit into each core and a reser­
vation table into each memory controller to provide reader-
writer locks. MiSAR is a message-passing synchronization
accelerator distributed at each LLC slice of tile-based many-
core chips. These schemes provide efficient synchronization
for CPU systems w ith o u t relying on hardware coherence proto­
cols. As shown in Table 4, compared to these works, SynCron
is a more effective, general and easy-to-use solution for NDP
systems. These works have two major shortcomings. First,
they are designed for u n ifo rm architectures, and would incur
high performance overheads in n o n -u n ifo rm , d is tr ib u te d NDP
systems under high-contetion scenarios, similarly to f l a t in
Figure 21b. Second, SSB and LCU handle overflow cases us­
ing software exception handlers that typically incur large per­
formance overheads, while MiSAR ’ s overflow scheme would
incur high performance degradation due to high network traffic
and communication costs between the cores and the synchro­
nization accelerator (Section 6.7.3). In contrast, S yn C ro n is
a non-uniformity aware, hardware-only, end-to-end solution
designed to handle key characteristics of NDP systems.

Synchronization on GPUs. GPUs support remote atomic
units at the shared cache and hardware barriers among threads
of the same block [114], while inter-block barrier synchroniza­
tion is inefficiently implemented via the host CPU [114]. The
closest work to ours is HQL [153], which modifies the tag
arrays of L1 and L2 caches to support the lock primitive. This
scheme incurs high area cost [41], and is tailored to the GPU
architecture that includes a shared L2 cache, while most NDP
systems do n o t have shared caches.

Synchronization on MPPs. The Cray T3D/T3E [81, 127],
SGI Origin [88], and AMOs [154] include remote atomics at
the memory controller, while NYU Ultracomputer [52] pro­
vides fe tc h & a n d remote atomics in each network switch. As
discussed in Section 2, synchronization via remote atomics
incurs high performance overheads due to high global traf­
fic [41, 108, 147, 153]. Cray T3E supports a barrier using
physical wires, but it is designed specifically for 3D torus
interconnect. Tera MTA [12], HEP [71, 134], J- and M-
machines [29,78], and Alewife [5] provide synchronization

274

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

using hardware bits (fu ll/e m p ty bits) as tags in each m e m o ry
w ord . This scheme can incur high area cost [146]. QOLB [51]
associates one cache line for every lock to track a pointer to the
next waiting core, and one cache line for local spinning using
bits (syncb its). QOLB is built on the underlying cache coher­
ence protocol. Similarly, DASH [95] keeps a queue of waiting
cores for a lock in the directory used for coherence to notify
caches when the lock is released. CM5 [94] supports remote
atomics and a barrier among cores via a dedicated physical
control network (organized as a binary tree), which would
incur high hardware cost to be supported in NDP systems.
8. Conclusion

S yn C ro n is the first end-to-end synchronization solution
for NDP systems. S ynC ron avoids the need for complex co­
herence protocols and expensive rm w operations, incurs very
modest hardware cost, generally supports many synchroniza­
tion primitives and is easy-to-use. Our evaluations show that it
outperforms prior designs under various conditions, providing
high performance both under high-contention (due to reduc­
tion of expensive traffic across NDP units) and low-contention
scenarios (due to direct buffering of synchronization variables
and high execution parallelism). We conclude that S ynC ron is
an efficient synchronization mechanism for NDP systems, and
hope that this work encourages further comprehensive stud­
ies of the synchronization problem in heterogeneous systems,
including NDP systems.
Acknowledgments

We thank the anonymous reviewers of ISCA 2020, MI­
CRO 2020 and HPCA 2021 for feedback. We thank Dionisios
Pnevmatikatos, Konstantinos Nikas, Athena Elafrou, Foteini
Strati, Dimitrios Siakavaras, Thomas Lagos, Andreas Tri-
antafyllos for helpful technical discussions. We acknowledge
support from the SAFARI group s industrial partners, espe­
cially ASML, Google, Facebook, Huawei, Intel, Microsoft,
VMware, and Semiconductor Research Corporation. During
part of this research, Christina Giannoula was funded from the
General Secretariat for Research and Technology (GSRT) and
the Hellenic Foundation for Research and Innovation (HFRI).
References

[1] S. A b ada l, A . C a b e llo s -A p a ric io , E. A la rc o n , and J. Torre llas, “ W iS yn c : A n A r ­
ch itectu re fo r Fast S yn ch ro n iza tio n th ro u g h O n -C h ip W ire less C o m m u n ica tio n ,”
in ASPLOS, 2016.

[2] J. L . A b e llá n , J. Fernández, and M . E. A ca c io , “ A g -line -based N e tw o rk fo r Fast
and E ffic ie n t B a rr ie r S yn ch ro n iza tio n in M a n y -C o re C M P s,” in ICPP, 2010.

[3] J. L . A b e llá n , J. Fernández, M . E. A c a c io et al., “ G locks : E ffic ie n t S upport fo r
H ig h ly -C o n te n d e d Locks in M a n y -C o re C M P s,” in IPDPS, 2011.

[4] M . A beydeera and D . Sanchez, “ Chronos: E ffic ie n t S pecula tive P a ra lle lism fo r
A cce le ra to rs ,” in ASPLOS, 2020.

[5] A . A g a rw a l, R . B ia n c h in i, D . C haiken , K . L . Johnson et al., “ T he M IT A le w ife
M ach in e : A rc h ite c tu re and Perform ance,” in ISCA, 1998.

[6] N . A g a rw a l, T. K rish n a , L .-S . Peh, and N . K . Jha, “ G A R N E T : A D e ta ile d on C h ip
N e tw o rk M o d e l ins ide a F u ll-S ys te m S im u la to r,” in ISPASS, 2009.

[7] M . A h m ad , F. H ija z , Q . Sh i, and O . K han, “ C R O N O : A B e n ch m a rk Su ite fo r
M u ltith re a d e d G raph A lg o r ith m s E xe cu ting on F u tu r is tic M u ltic o re s ,” in IISWC,
2015.

[8] J. A h n , S. H ong, S. Yoo, and O. M u tlu , “ A Sca lab le P ro ce ss in g -in -M e m o ry A c ­
ce le ra to r fo r P a ra lle l G raph Processing,” in ISCA, 2015.

[9] J. A h n , S. Yoo, O . M u tlu , and K . C ho i, “ P IM -E n a b le d In s truc tions : A L o w -
overhead, L o c a lity -A w a re P ro ce ss in g -in -M e m o ry A rch ite c tu re ,” in ISCA, 2015.

[10] B . S. A k g u l, J. Lee, and V. J. M ooney, “ A S ys tem -on-a -C h ip L o c k Cache w ith
Task P reem ption Support,” in CASES, 2001.

[11] D . A lis ta rh , J. K o p insky , J. L i , and N . S havit, “ The S p rayL is t: A Sca lab le R e laxed
P r io r i ty Queue,” in PPoPP, 2015.

[12] R. A lve rso n , D . C a llahan, D . C um m ings , B . K o b len z et al., “ The Tera C om pu te r
System ,” ICS, 1990.

[13] T. A nderson , “ The Perform ance Im p lic a tio n s o f S p in -W a itin g A lte rn a tive s fo r
S h a re d -M em ory M u ltip rocesso rs ,” in ICPP, 1989.

[14] A R M , “ C o rte x -A 7 Techn ica l R e ference M an u a l,” 2009.
[15] A . A w an, M . B rorsson, V. V lassov, and E. A yguade, “ P erform ance C haracte riza ­

t io n o f In -M e m o ry D a ta A n a ly t ic s on a M o d e rn C lo u d Server,” in BDCC, 2015.
[16] A . J. A w an, V. V lassov, M . B rorsson, and E. Ayguade, “ N o de A rc h ite c tu re I m p l i­

cations fo r In -M e m o ry Data A n a ly t ic s on S ca le -in C lusters,” in BDCAT, 2016.
[17] R. B a lasubram onian, J. Chang, T. M a n n in g , J. H . M o re n o et al., “ N ea r-D a ta P ro ­

cessing: Ins igh ts f ro m a M IC R O -4 6 W orkshop,” IEEEMicro, 2014.
[18] U . N . B hat, An Introduction to Queueing Theory: Modeling and Analysis in Ap

plications, 2nd ed. B irkh áuse r Basel, 2015.
[19] A . B o roum and, S. G hose, Y. K im , R. A u s ava rungn irun et al., “ G oog le W ork load s

fo r C onsum er Devices: M it ig a t in g D ata M o v e m e n t B o ttlenecks,” in ASPLOS,
2018.

[20] A . B o roum and, S. Ghose, M . Patel, H . Hassan et al., “ C o N D A : E ffic ie n t Cache
C oherence S u ppo rt fo r N ear-data A cce le ra to rs ,” in ISCA, 2019.

[21] A . B o roum and, S. Ghose, M . Patel, H . Hassan et al., “ L a z y P IM : A n E ffic ie n t
Cache Coherence M ech a n ism fo r P rocess ing -in -M em o ry ,” C A L, 2017.

[22] S. B o y d -W ic k iz e r, A . T. C lem ents, Y. M ao , A . Pesterev et al., “ A n A n a ly s is o f
L in u x S c a la b ility to M a n y Cores,” in OSDI, 2010.

[23] D . S. C a li, G . S. K a ls i, Z . B in g o l, C. F ir t in a et al., “ G e n A S M : A H ig h ­
Perform ance, L o w -P o w e r A p p ro x im a te S tring M a tc h in g A cce le ra tio n F ram e­
w o rk fo r G enom e Sequence A n a lys is ,” in MICRO, 2020.

[24] M . C habb i, M . Fagan, and J. M e llo r-C ru m m e y , “ H ig h P erform ance L o cks fo r
M u lt i-L e v e l N U M A Systems,” PPoPP, 2015.

[25] J. Choe, A . Huang, T. M oreshe t, M . H e r l ih y et al., “ C oncu rren t Da ta Structures
w ith N ear-D ata-P rocess ing: A n A rc h ite c tu re -A w a re Im p le m e n ta tio n ,” in SPAA,
2019.

[26] B . C ho i, R . K o m u ra v e lli, H . Sung, R . S m o lin s k i et al., “ D e N ovo: R e th in k in g the
M e m o ry H ie ra rch y fo r D is c ip lin e d P a ra lle lism ,” in PACT, 2011.

[27] T. C ra ig , “ B u ild in g F IF O and P r io r ity Q ueu ing S p in Locks f ro m A to m ic Swap,”
Tech. Rep., 1993.

[28] D . C u lle r, J. S ingh , and A . G upta, Paral lel Computer Architecture: A Hardware
Software Approach, 1999.

[29] W . D a lly , J. S. F iske, J. Keen, R. L e th in et al ., “ The M essage -D rive n Processor: A
M u lt ic o m p u te r Processing N o de w ith E ffic ie n t M echan ism s,” IEEE Micro, 1992.

[30] T. D a v id , R. G uerraou i, and . V. T rigo nak is , “ E ve ry th in g Y o u A lw a y s W anted to
K n o w A b o u t S yn ch ro n iza tio n bu t W ere A f ra id to A s k ,” in SOSP, 2013.

[31] T. D a v id , R. G uerraou i, and V. T rig o n a k is , “ A s y n ch ro n ize d Concurrency: The
Secret to S ca ling C oncu rren t Search D a ta S tructures,” in ASPLOS, 2015.

[32] T. A . D a v is and Y. H u , “ The U n iv e rs ity o f F lo rid a Sparse M a tr ix C o lle c tio n ,”
TOMS, 2011.

[33] G . F. de O live ira , J. G om ez-Luna, L . Orosa, S. Ghose et al., “ A N e w M e th o d o lo g y
and O pen-S ource B e n ch m a rk Su ite fo r E va lua tin g Data M o v e m e n t B o ttlenecks:
A N ea r-D a ta Processing Case S tudy,” in SIGMETRi CS, 2021.

[34] F. Devaux, “ The T rue Processing in M e m o ry A cce le ra to r,” in Hot Chips, 2019.
[35] D . D ice , V. J. M ara the , and N . S havit, “ F la t-C o m b in in g N U M A L ocks ,” in SPAA,

2011.
[36] D . D ice , V. J. M ara the , and N . Shavit, “ L o c k C o h o rtin g : A G enera l Technique

fo r D e s ign ing N U M A L ocks ,” TOPC, 2015.
[37] D . D rachsler, M . Vechev, and E. Yahav, “ P ractica l C o ncu rren t B in a ry Search

Trees v ia L o g ic a l O rde ring ,” PPoPP, 2014.
[38] M . D rum ond , A . D a g lis , N . M irza d e h , D . U s tiu g o v et al., “ The M o n d r ia n Data

E ngine ,” in iSCA, 2017.
[39] E. E b ra h im i, R. M ifta k h u td in o v , C. F a llin , C. J. Lee et al., “ P a ra lle l A p p lic a tio n

M e m o ry Schedu ling ,” in MICRO, 2011.
[40] A . E la fro u , G . Goum as, and N . K o z ir is , “ C o n flic t-F re e S ym m e tric Sparse M a tr ix -

V e c to r M u lt ip l ic a t io n on M u lt ic o re A rch ite c tu re s ,” in SC, 2019.
[41] A . E lT an taw y and T. M . A a m o d t, “ W arp S ch edu ling fo r F in e -G ra in ed S yn ch ro ­

n iza tio n ,” in HPCA, 2018.
[42] I . Fernandez, R. Q u is lan t, C. G iannou la , M . A ls e r et al., “ N A T S A : A N e ar-D a ta

P rocessing A cce le ra to r fo r T im e Series A n a lys is ,” ICCD, 2020.
[43] M . G ao, G. Ayers, and C. K o zy ra k is , “ P rac tica l N e ar-D a ta Processing fo r In ­

M e m o ry A n a ly t ic s F ram ew orks,” in PACT, 2015.
[44] M .G a o and C. K o zy ra k is , “ H R L : E ffic ie n t and F le x ib le R e con figu rab le L o g ic fo r

N e a r-D a ta Processing,” in HPCA, 2016.
[45] M . Gao, J. Pu, X . Yang, M . H o ro w itz et al., “ T E T R IS : Sca lab le and E ffic ie n t

N e u ra l N e tw o rk A cce le ra tio n w ith 3D M e m o ry ,” in ASPLOS, 2017.
[46] S. G hose, A . B o roum and, J. K im , J. G om e z-Lu na et al., “ P rocess ing -in -M em o ry :

A W o rk lo a d -D riv e n Perspective,” IBMJRD, 2019.
[47] S. G hose, T. L i, N . H a jinazar, D . Senol C a li et al., “ D e m y s tify in g C o m p lex

W o rk lo a d -D R A M In te rac tions : A n E xp e rim e n ta l S tudy,” in SIGMETRiCS, 2019.
[48] C. G iannou la , G. Goum as, and N . K o z ir is , “ C o m b in in g H T M w ith R C U to Speed

u p G raph C o lo r in g on M u lt ic o re P la tfo rm s,” in ISC HPC, 2018.
[49] M . G okhale , S. L lo y d , and C. Hajas, “ N e a r M e m o ry Data S truc tu re Rearrange­

m ent,” in MEMSYS, 2015.
[50] J. G om ez-Luna, I. E l H a jj, I. Fernandez, C. G iann ou la et al., “ B e nch m a rk in g a

N e w Parad igm : U nders tan d ing a M o d e rn P ro ce ss in g -in -M e m o ry A rch ite c tu re ,”
in SIGMETRICS, 2021.

[51] J. R. G oodm an, M . K . V e rnon, and P. J. W oest, “ E ffic ie n t S yn ch ro n iza tio n P r im i­
tives fo r Large-Sca le C ache-C oheren t M u ltip rocesso rs ,” in ASPLOS, 1989.

[52] A . G o ttlie b , R. G rishm an, C. K ru s k a l, K . M c A u l if fe et al., “ The N Y U U ltra c o m ­
pu te r— D e s ign ing a M IM D , S h a re d -M em ory P a ra lle l M ach in e ,” in ISCA, 1982.

[53] D . G ru n w a ld and S. V a jracharya, “ E ffic ie n t B a rrie rs fo r D is tr ib u te d Shared M e m ­
o ry Com puters,” in IPDPS, 1994.

[54] P. G u, S. L i , D . Stow, R. Barnes et al., “ Leve rag ing 3D Techno log ies fo r H a rd ­
w are S e curity : O p p o rtu n itie s and Challenges,” in GLSVLSI, 2016.

[55] P. G u, X . X ie , Y. D in g , G . Chen et al., “ Ip IM : P rogram m ab le in -M e m o ry Im age
Processing A cce le ra to r U s in g N e a r-B a n k A rch ite c tu re ,” ISCA, 2020.

[56] R. G uerraou i and V. T r igo nak is , “ O p tim is tic C oncu rren cy w ith O P T IK ,” PPoPP
2016.

[57] H . G u iro u x , R. Lachaize, and V. Q u6m a, “ M u lt ic o re L ocks : The Case Is N o t
C losed Yet,” in USENIXATC, 2016.

[58] J. G om ez-Luna, J. M . G onz& lez-L inares, J. I. Benavides B en itez, and N . G u il
M a ta , “ P erform ance M o d e lin g o f A to m ic A d d it io n s on G P U Scratchpad M e m ­
ory,” TPDS, 2013.

[59] R. H a d id i, B . A sg a ri, B . A . M udassar, S. M u kh o p a d h y a y et al., “ D e m y s tify in g
the C haracte ris tics o f 3D -stacked M em o ries : A case S tudy fo r H y b rid M e m o ry
Cube,” in IISWC, 2017.

[60] M . H ashem i, E. E b ra h im i, O . M u tlu , Y. N . Patt et al., “ A cce le ra tin g Dependent
Cache M isses w ith an Enhanced M e m o ry C o n tro lle r,” in ISCA, 2016.

[61] M . H e in r ic h , V. Soundararajan, J. Hennessy, and A . G upta, “ A Q u a n tita tive A n a l­
ys is o f the P erform ance and S c a la b ility o f D is tr ib u te d Shared M e m o ry Cache
C oherence P ro toco ls ,” TC, 1999.

[62] D . Hensgen, R. F in ke l, and U . M anber, “ T w o A lg o r ith m s fo r B a rr ie r S yn ch ro ­
n iza tio n ,” International Journal of Parallel Programming, 1988.

[63] M . H e r l ih y a n d N . Shavit, The Art of Multiprocessor Programming, 2008.
[64] T. H oe fle r, T. M e h la n , F. M ie tk e , a n d W . Rehm , “ A Su rvey o f B a rr ie r A lg o r ith m s

fo r Coarse G ra ined Supercom puters,” Chemnitzer Informatik Berichte, 2004.
[65] S. H o ng , S. S a lih og lu , J. W id o m , and K . O lu ko tu n , “ S im p lify in g Sca lab le G raph

P rocessing w ith a D o m a in -S p e c ific Language,” in CGO, 2014.
[66] K . Hsieh, E. E b ra h im i, G . K im , N . C hatterjee et al., “ Transparen t O fflo a d in g

and M a p p in g : E n ab ling P rogram m er-T ransparen t N e a r-D a ta Processing in G PU
System s,” in ISCA, 2016.

275

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

[67] K . H sieh , S. K han, N . V ija y k u m a r, K . Chang etal., “A cce le ra tin g P o in te r C hasing
in 3D -s tacked M e m o ry : Challenges, M echan ism s, E va lua tion ,” in ICCD, 2016.

[68] In te l, 64 and IA-32 Architectures Software Developer’s Manual, 2009.
[69] J. Joao, M . A . Su lem an, O. M u tlu , and Y. Patt, “ B o ttle n e c k Id e n tif ic a t io n and

S chedu ling in M u ltith re a d e d A p p lic a tio n s ,” in ASPLOS, 2012.
[70] J. Joao, M . A . Su lem an, O . M u tlu , and Y. Patt, “ U til ity -B a s e d A cce le ra tio n o f

M u ltith re a d e d A p p lic a tio n s on A s y m m e tr ic C M P s,” in ISCA, 2013.
[71] H . F. Jordan, “ P erform ance M easurem ents o n H E P - a P ip e lined M IM D C o m ­

puter,” ISCA, 1983.
[72] H . Jun, J. Cho, K . Lee, H .-Y . Son etal., “ H B M D R A M T ech no lo gy and A rc h ite c ­

ture ,” in IMW, 2017.
[73] K . K a n e llo p o u lo s , N . V ija y k u m a r, C. G iannou la , R. A z iz i et al., “ S M A S H : C o ­

D e s ign ing S o ftw a re C om press ion and H a rdw are -A cce le ra ted In d e x in g fo r E f f i­
c ie n t Sparse M a tr ix O perations,” in MICRO, 2019.

[74] G . K a ry p is and V. K u m ar, “ A Fast and H ig h Q u a lity M u lt ile v e l Scheme fo r P a rti­
t io n in g Irre g u la r G raphs,” SIAM J. Sci. Comput., 1998.

[75] S. K a x iras and G . K e ram idas, “ S A R C Coherence: S ca ling D ire c to ry Cache C o­
herence in P erform ance and Power,” IEEE Micro, 2010.

[76] S. K ax iras , D . K la ftenegger, M . N o rg ren , A . Ros et al., “ T u rn in g C e ntra lized
Coherence and D is tr ib u te d C r it ic a l-S e c tio n E xe cu tio n on T h e ir Head: A N e w
A p p ro a ch fo r Sca lab le D is tr ib u te d Shared M e m o ry ,” in HPDC, 2015.

[77] S. K a x iras and A . Ros, “ A N e w Perspective fo r E ff ic ie n t V irtu a l-C a ch e C oher­
ence,” i n ISCA, 2013.

[78] S. W . K eck le r, W . J. D a lly , D . M a s k it, N . P. C a rte r et al., “ E x p lo it in g F in e -G ra in
T hread L e ve l P a ra lle lism on the M IT M u lt i- A L U Processor,” in ISCA, 1998.

[79] J. H . K e lm , D . R. Johnson, W . Tuohy, S. S. L um e tta et al., “ Cohesion: A H y b rid
M e m o ry M o d e l fo r A cce le ra to rs ,” in ISCA, 2010.

[80] J. H . K e lm , M . R. Johnson, S. S. Lum e ttta , and S. J. Patel, “ W A Y P O IN T : S ca ling
Coherence to Thousand-C ore A rch itec tu res ,” in PACT, 2010.

[81] R. E. K essler and J. L . Schwarzm eier, “ C ray T 3 D : A N e w D im e n s io n fo r C ray
Research,” Digest of Papers. Compcon Spring, 1993.

[82] D . K im , J. K u ng , S. C hai, S. Y a la m a n c h ili et al., “ N eurocube: A P rogram m able
D ig ita l N e u ro m o rp h ic A rc h ite c tu re w ith H ig h -D e n s ity 3 D M e m o ry ,” in ISCA,
2016.

[83] G . K im , J. K im , J. H . A h n , and J. K im , “ M e m o ry -C e n tr ic S ystem In te rconnect
D e s ign w ith H y b rid M e m o ry Cubes,” in PACT, 2013.

[84] J. K im , D . Senol C a li, H . X in , D . Lee et al., “ G R IM -F ilte r: Fast Seed L o ca tio n
F ilte r in g in D N A Read M a p p in g U s in g P ro ce ss in g -in -M e m o ry Technolog ies,”
BMC Genomics, 2018.

[85] Y. K im , W . Yang, and O. M u tlu , “ R am ula to r: A
Fast and E x tens ib le D R A M S im u la to r,” CAL, 2015.
h ttp s ://g ith u b .c o m /C M U -S A F A R I/ra m u la to r

[86] L a m port, “ H o w to M a k e a M u ltip ro c e s s o r C o m pu te r T h a t C o rre c tly Executes
M u ltip ro c e s s Program s,” TC, 1979.

[87] L . L a m port, “ A N e w S o lu tio n o f D ijk s tra ’s C oncu rren t P rog ram m ing P rob lem ,”
Commun. ACM, 1974.

[88] J. L a u don and D . L en osk i, “ The S G I O rig in : A c c N U M A H ig h ly Scalable
Server,” in ISCA, 1997.

[89] D . Lavenier, J.-F. Roy, and D . Furode t, “ D N A M a p p in g us ing P rocessor-in­
M e m o ry A rch ite c tu re ,” in BIBM, 2016.

[90] M . LeBeane, S. Song, R. Panda, J. H . R yoo et al., “ Da ta P a rtit io n in g Strategies
fo r G raph W ork load s on H eterogeneous C lusters,” in SC, 2015.

[91] A . R. L e b e ck and D . A . W ood, “ D y n a m ic S e lf-In v a lid a tio n : R educing Coherence
O verhead in S h a re d -M em ory M u ltip rocesso rs ,” ISCA, 1995.

[92] D . U . Lee, K . W . K im , K . W . K im , H . K im et al., “ 25.2 A 1 .2V 8G b 8-channel
128G B/s H ig h -B a n d w id th M e m o ry (H B M) Stacked D R A M w ith E ffe c tive M i ­
c robum p I/O Test M e th ods U s in g 2 9 n m Process and T S V ,” in ISSCC, 2014.

[93] D . Lee, S. G hose, G . Pekh im enko , S. K h a n et al., “ S im u ltaneous M u lt i-L a y e r
Access: Im p ro v in g 3D -S tacked M e m o ry B a n d w id th at L o w Cost,” TACO, 2016.

[94] C. E. Le iserson, Z . S. A buham deh, D . C. D ouglas, C. R. Feynm an et al., “ The
N e tw o rk A rc h ite c tu re o f the C o nnection M a ch in e C M -5 (E xtended A b s tra c t),” in
SPAA, 1992.

[95] D . L e n osk i, J. Laudon, K . G harachorloo , W .-D . W eber et al., “ The S tan fo rd Dash
M u ltip ro ce sso r,” Computer, 1992.

[96] A . L i , G .-J. van den B raak, H . C o rpo raa l, and A . K um ar, “ F ine -G ra in ed S yn ch ro ­
n iza tions and D a ta flo w P rog ram m ing on G PU s,” in ICS, 2015.

[97] C. L ia n g and M . P rv u lo v ic , “ M iS A R : M in im a lis t ic S yn ch ro n iza tio n A cce le ra to r
w ith Resource O v e rflo w M anagem ent,” in ISCA, 2015.

[98] J. L iu , H . Zhao, M . A . O g lea ri, D . L i et al., “ P ro ce ss in g -in -M e m o ry fo r Energy-
E ffic ie n t N e u ra l N e tw o rk T ra in in g : A H eterogeneous A p p ro ach ,” in MICRO,
2018.

[99] Z . L iu , I. C a lc iu , M . H e rlih y , and O. M u tlu , “ C o ncu rren t Da ta S tructures fo r
N e a r-M e m o ry C o m pu ting ,” in SPAA, 2017.

[100] V. Luchangco, D . Nussbaum , and N . S havit, “ A H ie ra rch ica l C L H Q ueue L o c k ,”
in Euro-Par, 2006.

[101] P. M agnusson, A . L a n d in , and E. Hagersten, “ Q ueue L o cks on Cache Coherent
M u ltip rocesso rs ,” in IPDPS, 1994.

[102] J. M e llo r-C ru m m e y and M . Scott, “ S yn ch ro n iza tio n w ith o u t C on te n tion ,” ASP-
LOS, 1991.

[103] J. M . M e llo r-C ru m m e y and M . L . Sco tt, “A lg o r ith m s fo r Sca lab le S yn ch ro n iza ­
t io n on S h a re d -M em ory M u ltip rocesso rs ,” TOCS, 1991.

[104] M . M . M ic h a e l and M . L . Scott, “ S im p le , Fast, and P rac tica l N o n -B lo c k in g and
B lo c k in g C o ncu rren t Q ueue A lg o r ith m s ,” in PODC, 1996.

[105] A . M irh o s s e in i and J. Torre llas, “ S u rv ive : Po in te r-B ased In -D R A M Increm en ta l
C h e ck -P o in tin g fo r L o w -C o s t Da ta Persistence and R o llb ack -R ecove ry ,” CAL,
2016.

[106] S. A . M o ju m d e r, M . S. L o u is , Y. Sun, A . K . Z ia b a ri et al., “ P ro f il in g D N N W o rk ­
loads on a Vo lta-based D G X -1 System ,” in IISWC, 2018.

[107] D . M o lk a , D . Hackenberg, R. Schone, and M . S. M u lle r, “ M e m o ry Perform ance
and Cache C oherency E ffe c ts on an In te l N e h a le m M u ltip ro c e s s o r System ,” in
PACT, 2009.

[108] A . M u kka ra , N . Beckm ann, and D . Sanchez, “ P H I: A rc h ite c tu ra l S upport fo r
S yn ch ro n iza tio n - and B a n d w id th -E ff ic ie n t C o m m uta tive Scatter U pdates,” in MI
CRO, 2019.

[109] N . M u ra lim a n o h a r, R. B a lasubram onian, and N . Jouppi, “ O p tim iz in g N U C A O r­
gan iza tions and W ir in g A lte rn a tive s fo r Large Caches w ith C A C T I 6.0,” in MI
CRO, 2007.

[110] O . M u tlu , S. Ghose, J. G om ez-Luna , and R. A u sava rungn irun , “ A M o d e rn P rim er
on Processing in M e m o ry ,” Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, 2021.

[111] O. M u tlu , S. G hose, J. G om ez-Luna, and R. A u sava rungn irun , “ Processing Data
W h e re I t M akes Sense: E n a b lin g In -M e m o ry C o m pu ta tio n ,” MlCPRO, 2019.

[112] L . N a i, R. H a d id i, J. S im , H . K im et al., “ G ra p h P IM : E n a b lin g In s tru c tio n -L e v e l
P IM O fflo a d in g in G raph C o m p u tin g Fram ew orks,” in HPCA, 2017.

[113] R. N a ir, S. F. A n tao , C. B e rto ll i, P. Bose et al., “ A c tiv e M e m o ry Cube: A
P ro ce ss in g -in -M e m o ry A rc h ite c tu re fo r Exascale Systems,” IBM JRD, 2015.

[114] N V ID IA , “ N V ID IA Tesla V 1 0 0 G P U A rch ite c tu re ,” White Paper, 2017.
[115] N V ID IA , “ O N T A P A I - N V I D I A D G X -2 P O D w ith N e tA p p A F F A 8 0 0 ,” White

Paper, 2019.
[116] J. O h, M . P rv u lo v ic , and A . Z a jic , “ T L S yn c : S upport fo r M u lt ip le Fast B a rrie rs

U s in g O n -C h ip T ransm iss ion L ines ,” in ISCA, 2011.
[117] A . P a ttna ik, X . Tang, A . Jog, O . K a y ira n et al., “ S ch edu ling Techniques fo r G P U

A rch ite c tu re s w ith P ro ce ss in g -In -M e m o ry C a p ab ilitie s ,” in PACT, 2016.
[118] W . Pugh, “ C oncu rren t M a in tenance o f S k ip L is ts ,” Tech. Rep., 1990.
[119] S. Pugsley, J. Jestes, H . Zhang, R. B a lasub ram on ian et al., “ N D C : A n a ly z in g the

Im p a c t o f 3D -stacked M e m o ry + L o g ic Devices on M apR educe W ork loads,” in
ISPASS, 2014.

[120] A . Ros and S. K ax iras , “ C a llb ack : E ff ic ie n t S yn ch ro n iza tio n w ith o u t In v a lid a tio n
w ith a D ire c to ry ju s t fo r S p in -W a itin g ,” in ISCA, 2015.

[121] A . Ros and S. K ax iras , “ C o m p le x ity -E ffe c tiv e M u lt ic o re Coherence,” PA C T
2012.

[122] L . R u d o lp h and Z . Segall, Dynamic Decentralized Cache Schemes fo r MIMD
Parallel Processors, 1984.

[123] J. Rutgers, M . B e k o o ij, and G . S m it, “ Portab le M e m o ry C onsis tency fo r S o ftw are
M anaged D is tr ib u te d M e m o ry in M a n y -C o re SoC,” in IPDPSW, 2013.

[124] J. Sampson, R. G onzalez, J.-F. C o lla rd , N . J o u p p ietal., “ E x p lo it in g F ine -G ra in ed
D ata P a ra lle lism w ith C h ip M u ltip ro ce sso rs and Fast B a rrie rs ,” in MICRO, 2006.

[125] D . Sanchez and C. K o zy ra k is , “ Z S im : Fast and A ccu ra te M ic ro a rc h ite c tu ra l S im ­
u la tio n o f T ho usand-C ore Systems,” in ISCA, 2013.

[126] M . L . Scott, “ N o n -B lo c k in g T im e o u t in Sca lab le Q ueue-based S p in L ocks ,” in
PODC, 2002.

[127] S. L . Sco tt, “ S yn ch ro n iza tio n and C o m m u n ica tio n in the T3E M u ltip ro ce sso r,” in
ASPLOS, 1996.

[128] V. Seshadri, D . Lee, T. M u ll in s , H . Hassan etal., “ A m b it: In -M e m o ry A cce le ra to r
fo r B u lk B itw is e O perations U s in g C o m m o d ity D R A M T echno logy ,” in MICRO,
2017.

[129] Y. S. Shao, S. L . X i , V. Srin ivasan , G .-Y . W e i et al., “ C o -D es ign ing A cce le ra to rs
and SoC In terfaces u s ing ge m 5 -A la d d in ,” in MICRO, 2016.

[130] D . Siakavaras, K . N ika s , G . Goum as, and N . K o z ir is ,
“ R C U -H T M : C o m b in in g R C U w ith H T M to Im p le m e n t H ig h ly
E ffic ie n t C o ncu rren t B in a ry Search Trees,” P A C T 2017.
h ttp s ://g ith u b .co m /jim s ia k /co n cu rre n t-m a p s

[131] G. S ingh , D . D iam antopou los , C. H ag le itner, J. G om e z-Lu na et al., “ N E R O : A
N e ar H ig h -B a n d w id th M e m o ry S tenc il A cce le ra to r fo r W eather P re d ic tio n M o d ­
e ling ,” in FPL, 2020.

[132] G. S ingh, J. G om ez-Luna, G . M a ria n i, G . F. O liv e ira et al., “ N A P E L : N e a r­
M e m o ry C o m p u tin g A p p lic a tio n P erform ance P re d ic tio n v ia E nsem ble Lea rn ­
ing ,” in D A C , 2019.

[133] G. S ingh, L . C h e lin i, S. C orda, A . J. A w a n et al., “ N e a r-M e m o ry C o m pu ting :
Past, Present, and Future ,” MICPRO, 2019.

[134] B . J. S m ith , “ A P ipe lined , Shared Resource M IM D C om pu ter,” ICPP, 1978.
[135] D . J. Sorin , M . D . H i l l , and D . A . W ood, A Primer on Memory Consistency and

Cache Coherence. M o rg a n & C la y p o o l Publishers, 2011.
[136] F. S tra ti, C. G iannou la , D . Siakavaras, G. G oum as et al., “ A n A d a p tiv e C oncu r­

ren t P r io r i ty Q ueue fo r N U M A A rch ite c tu re s ,” in CF, 2019.
[137] M . A . Su lem an, O . M u tlu , J. A . Joao, K h u b a ib et al., “ D a ta M a rs h a lin g fo r M u lt i ­

C o re A rch ite c tu re s ,” in ISCA, 2010.
[138] M . A . Su lem an, O . M u tlu , M . Q uresh i, and Y. Patt, “ A cce le ra tin g C r it ic a l S ection

E xe cu tio n w ith A s y m m e tr ic M u lt i-C o re A rch itec tu res ,” in ASPLOS, 2009.
[139] H . Sung, R. K o m u ra v e lli, and S. V. A d v e , “ D e N o vo N D : E ffic ie n t H a rdw are Sup­

p o r t fo r D is c ip lin e d N o n -D e te rm in ism ,” ASPLOS, 2013.
[140] N . R. Ta llen t, J. M . M e llo r-C ru m m e y , and A . P o rte rfie ld , “ A n a ly z in g L o c k C on­

te n tio n in M u ltith re a d e d A p p lic a tio n s ,” in PPoPP, 2010.
[141] X . Tang, J. Z ha i, X . Q ian , and W . Chen, “ p L o c k : A Fast L o c k fo r A rch ite c tu re s

w ith E x p lic it In te r-co re M essage Passing,” in ASPLOS, 2019.
[142] S. T orkam an i and V. L oh w eg , “ Su rvey on T im e Series M o t i f D iscove ry ,” Wiley

Interdis. Rev.: Data Mining and Knowledge Discovery, 2017.
[143] P .-A . Tsai, C. Chen, and D . Sanchez, “ A d a p tiv e S ch edu ling fo r System s w ith

A s y m m e tr ic M e m o ry H ie ra rch ies,” in MICRO, 2018.
[144] U P M E M , “ h ttp s ://w w w .u p m e m .co m /.”
[145] h yb rid m em orycube .o rg , “ H y b r id M e m o ry Cube S p e c ifica tio n rev. 2.1,” Hybrid

Memory Cube Consortium, 2015.
[146] E. V a lle jo , R. B e iv id e , A . C ris ta l, T. H a rris et al., “ A rc h ite c tu ra l S upport fo r Fa ir

R e ade r-W rite r L o c k in g ,” in MICRO, 2010.
[147] K . W ang, D . Fusse ll, and C. L in , “ Fast F in e -G ra in ed G lo b a l S yn ch ro n iza tio n on

G PU s,” in ASPLOS, 2019.
[148] C. W itte n b rin k , E. K i lg a r if f , and A . Prabhu, “ F e rm i G F100 G P U A rch ite c tu re ,”

IEEE Micro, 2011.
[149] P. T. W o lko tte , G. J. M . S m it, N . K a va ld jie v , J. E. B ecker et al., “ E nergy M o d e l

o f N e tw o rk s -o n -C h ip and a Bus,” in SOCC, 2005.
[150] X i l in x , “ V ir te x U ltra S ca le + H B M F P G A ,” 2019.
[151] M . Yan, X . Hu , S. L i, A . B asak et al., “ A l le v ia t in g Irre g u la r ity in G raph A n a ly tic s

A cce le ra tio n : A H a rdw are /S o ftw a re C o -D es ign A p p ro ach ,” in MICRO, 2019.
[152] C .-C . M . Yeh, Y. Z hu , L . U lanova , N . B e g u m et al., “ M a tr ix P ro file I: A l l Pairs

S im ila r i ty Joins fo r T im e Series: A U n ify in g V ie w tha t Inc lud es M o tifs , D iscords
and Shapelets,” in ICDM, 2016.

[153] A . Y ilm a ze r and D . K a e li, “ H Q L : A Sca lab le S yn ch ro n iza tio n M e ch a n ism fo r
G PU s,” in IPDPS, 2013.

[154] L . Zhang, Z . Fang, and J. B . Carter, “ H ig h ly E ff ic ie n t S yn ch ro n iza tio n based on
A c tiv e M e m o ry O perations,” in IPDPS, 2004.

[155] M . Zhang, Y. Zhu o , C. W ang, M . Gao et al., “ G raphP: R educ ing C o m m u n ica tio n
fo r P IM -B a se d G raph Processing w ith E ffic ie n t Da ta P a rtition ,” in HPCA, 2018.

[156] M . Zhang, H . Chen, L . Cheng, F. C. M . L a u et al., “ Sca lab le A d a p tiv e N U M A -
A w are L o c k ,” TPDS, 2017.

[157] W . Z hu , V. C. Sreedhar, Z . H u , and G. R. Gao, “ S yn ch ro n iza tio n State B u ffe r:
S u ppo rting E ffic ie n t F in e -g ra in S yn ch ro n iza tio n on M a n y -C o re A rch itec tu res ,”
in ISCA, 2007.

[158] Y. Zhu o , C. W ang, M . Zhang, R. W ang et al., “ G raphQ : Sca lab le P IM -B ased
G raph Processing,” in MICRO, 2019.

276

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:25:23 UTC from IEEE Xplore. Restrictions apply.

