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Editor’s note:
Currently, machine learning (ML) techniques are at the heart of smart 
cyber–physical systems (CPSs) and Internet-of-Things (IoT). This article 
discusses various challenges and probable solutions for security attacks 
on these ML-inspired hardware and software techniques.

—Partha Pratim Pande, Washington State University

 Fueled by independent developments in 
semiconductor technology, computing, commu-
nication, control signal generation, sensors, and 
actuators, the concept of a unified smart cyber–
physical system (CPS) has evolved into a ubiqui-
tous paradigm. CPS, as the name implies, links the 
cyber and the physical environments with smart 
control. Together with the evolution of Internet-of-
Things (IoT), which provides remote access to the 
CPSs for controlling and monitoring the intercon-
nected computing devices, the standard architec-
ture of a smart CPS comprises three major layers [1]: 
edge, fog, and cloud. The edge of the system is what 
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connects the system to the  physical 
environment, for instance, the sensors. 
The fog is the central layer where most 
system computations generally occur. 
However, to reduce transmission over-
head or for data privacy, initial compu-
tations may occur at the edge too. The 
cloud is what connects the system to a 

large-scale cyberspace, which performs extensive 
processing, storage, and communication between 
different CPSs.

Improving the decision-making, monitoring, and 
control capabilities across different CPS/IoT layers is 
critical for emerging applications. As the complexity, 
volume, and rate of data produced by IoT with many 
smart CPSs are increasing, machine learning (ML) 
has emerged as a dominant paradigm for analytics, 
decision-making, perception, and understanding. 
Consequently, reliability and security vulnerabilities 
of ML systems can have cascading effects on smart 
CPS applications and critically impact ML operation 
across all layers.

The most recent developments in ML, especially 
in deep learning, evolved from the concept of a 
single-layer neural network (NN), the perceptron [2], 
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to the multilayer perceptron (MLP) [2] and the 
current intricate multilayer deep NNs (DNNs) [3], 
[4], with the objective of approaching and even 
exceeding human decision-making capabilities 
for a certain set of tasks. Due to their effectiveness 
at handling large amounts of data, learning (and 
sometimes relearning [5]) input characteristics, 
and demonstrating high accuracy during infer-
ence of unseen inputs, ML systems have prolifer-
ated to numerous real-world applications. These 
include object detection [6], face recognition [7], 
speech recognition [8], spam filtering [9], mal-
ware detection [10], smart grids [11], and even 
safety-critical applications such as autonomous 
driving [12], intelligent transportation [13], and 
healthcare [14], [15], where errors may lead to 
catastrophic results.

Despite their high inference accuracy in prac-
tical applications, ML systems are highly vulnera-
ble to security and reliability threats at both the 
cloud and the edge. Poisoning the training data 
(e.g., by inserting random or crafted noise to the 
data) with incorrectly labeled inputs, inserting 
malicious components into the system hardware, 
polluting inputs with imperceptible noise during 
inference (i.e., during the run-time operation of 
a system), and monitoring system-side channels 
to deduce the underlying model are some of the 
ways in which an attacker can breach the secu-
rity of an ML system. Even in the absence of an 
explicit attacker, process variation during hard-
ware fabrication, memory errors, and environ-
mental conditions around the system during 
training and inference can compromise the relia-
bility of an ML system. Approaches to defend ML 
systems against these concerns exist, but each 
approach has its own limitations. Figure 1 summa-
rizes both  the  security and reliability threats that 
can affect the accuracy of  ML systems and their 
respective countermeasures.

In this article, we aim to provide a comprehensive 
overview of vulnerabilities that affect modern ML 
systems, survey state-of-the-art attacks and defense 
mechanisms, describe different solution directions 
and challenges, and identify potential promising 
avenues to research.

To ease reading, we provide the list of the acro-
nyms used in this article in Table 1 and the rest of 
this article is organized as shown in Figure 2.

ML: Concepts and terminology
An ML system, like any other traditional system, 

takes in the input(s) and generates the correspond-
ing output(s). However, unlike traditional systems, 
the ML system is capable of learning via input fea-
tures and using the learned features in decision-
making, which provide ML systems with the ability 
to perform tasks that are very challenging to perform 
using traditional systems.

NNs are often involved in the main decision-
making of many modern ML systems. An NN com-
prises an input layer that connects the external 
environment to the ML system, an output layer that 
outputs a decision, and hidden layer(s) sandwiched 
between the input and output layers. State-of-the-art 
ML systems commonly use DNNs with two or more 
hidden layers. Each layer comprises neurons or 
nodes which connect to other neurons in the corre-
sponding layers via a nonlinear activation function. 
Each neuron has its associated parameters, i.e., 
weight, bias, and/or filter coefficient. A detailed 
overview of NNs can be found in [16] and [17].

Neural network taxonomy
If the input propagates through the network in 

only one direction, the network is said to be feedfor-
ward. If there are feedback loops in the network, the 
network is called a recurrent NN (RNN) [18]. Long 
short-term memories (LSTMs) [19] are a branch of 
recurrent networks that retain information for a long 
duration, which makes them well suited for time-se-
ries prediction. When every neuron in one layer is 
connected to “all” neurons in the preceding layer, 
the network is said to be fully connected; otherwise, 
the network is sparse.

Since their advent, NNs have progressively 
improved over three generations (Figure 3). The 
details of the NN types of each generation can be 
found in the Appendix.

First generation of NNs: The first generation of NNs 
[20] is comprised of single-layer and MLPs [21]. MLPs 
are generally made up of multiple fully connected lay-
ers connected with thresholding activations.

Second generation of NNs: To reduce the num-
ber of parameters in a network, this generation of 
NN introduces convolutional NNs (CNNs), which 
make use of convolutional layers comprising of con-
volutional filters to extract important features from 
the input, while providing a certain degree of shift 
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invariance to the network [22]. A convolutional layer 
typically uses continuous nonlinear activations, and 
it is often followed by a pooling layer. Pooling lay-
ers reduce the network parameters even further by 
retaining only the most important features from the 
preceding layer, which leads to information loss. NNs 
of this generation are increasingly being used in prac-
tical ML systems.

A relatively new approach to solve the problem 
of information loss in CNNs is the use of capsule net-
works (CapsNets) [23]. CapsNets have hidden layers 
comprised of interconnected vectors that have input 
features and input probabilities, which allow these 
networks to learn spatial correlations between input 
features. As a result, CapsNets are able to infer high-
level entities quite similarly to human perception.

Figure 1. Overview of threats and challenges associated with ML-based systems: reliability 
threats and corresponding mitigation techniques (bottom), and security attacks and corresponding 
defenses (top).
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Another interesting approach toward NNs is 
the generative adversarial networks (GANs) [24]. 
These networks make use of the simultaneous 
interplay between a generator and a discrimi-
nator, where the generator produces realistic 
synthetic inputs, while the discriminator learns 
to differentiate between the real and synthetic 
inputs. This enables the NNs to generate syn-
thetic outputs that are very difficult to distinguish 
from the real ones.

Third generation of NNs: This generation of NNs 
makes use of spiking NNs (SNNs) [25] in an attempt 
to emulate human brain-like functioning. Unlike the 
networks discussed earlier, which consider the nor-
malized firing frequency of neurons, SNNs use spike 
trains to mimic the spatiotemporal characteristics of 
the biological neurons.

Neural network design cycle
Figure 4 provides an overview of the NN-based 

ML design cycle, which can be categorized in the 
training and inference stages. Training is typically 
performed at the cloud, whereas inference is typi-
cally performed at the edge in real-world smart CPSs 
(e.g., autonomous vehicles and wearable healthcare 
devices). In certain IoT/CPS systems, which are not 
constrained with resources or real timeliness, infer-
ence may also be performed at the fog or cloud 
(e.g., predictions on social networks and large-scale 
hospital data).

Training: Before deploying the NN into an ML sys-
tem, the NN must be trained. Training is a resource-in-
tensive process, generally carried out by third-party 
cloud servers, which involves the use of a training 
data set to find suitable values for the network 
parameters. Training is composed of a forward pass 
and a backward pass. The forward pass calculates 

the predicted output values by propagating inputs 

through the network, using the current parameter 

values. The backward pass updates the network 

parameters, while minimizing the loss function asso-

ciated with correct and predicted output values. This 

process (i.e., a forward pass and a backward pass), 

when repeated once for all the samples in the train-

ing data set, is called an epoch. The overall training 

process of an NN involves several epochs.

At the end of each epoch, the accuracy of the 

network is analyzed for some unseen data, which 

is not part of the training data set, i.e., the valida-

tion data set. The result of this testing can be used 

to fine tune the network hyper-parameters, like the 

number of layers, and select the best trained model. 

The training process then resumes and the network 

 
Table 1. List of acronyms used in this survey.

Figure 2. Organization of this article.
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parameters are again updated using the training 
data set until either the process reaches the maxi-
mum number of epochs (or cycles), or the network 
reaches the desired level of accuracy with the vali-
dation data set.

The most common way to check the final infer-
ence accuracy of a trained network is to use a 
testing data set. If the trained network is able to 
classify testing inputs correctly for more than the 
desired number of testing inputs, the network is 
considered suitable for deployment into a prac-
tical system. However, a DNN might misclassify 
an input that is perceptually similar to another 
input correctly identified by the same DNN [26]. 

To ensure the security, reliability, and safety of 
ML systems for safety-critical applications, e.g., 
autonomous vehicles and smart healthcare, it is 
imperative to develop a framework to analyze and 
verify these critical misclassifications. An orthogo-
nal research direction, therefore, is to use formal 
verification for ascertaining the dependability of 
the trained DNN.

Although an established research domain [27], 
[28], formal verification started gaining interest in 
the ML research community only since the last dec-
ade. Formal verification is an approach to check the 
correct behavior of a system on the basis of sound 
mathematical reasoning. Unlike testing, verification 
provides guarantees regarding system accuracy, 
independent of “specific” system inputs. Hence, 
as shown in Figure 5, the guarantees provided by 
verification are valid for the entire (infinite) input 
domain, whereas those provided by testing are 
limited only to the (finite) tested data. In terms of 
ML systems, due to the complexity of the underlying 
system, the objective of verification is usually to ver-
ify the correctness of the network for bounded input 
regions, as demonstrated in Figure 6, rather than for 
the entire input domain.

Inference: A trained and tested/verified NN can be 
deployed in a real-world ML system. At this stage, the 
NN performs classification/decision-making using 
actual, previously unseen, data (i.e., in real time). 
ML inference is typically carried out at the edge of 
the IoT/CPSs, thereby exposing the system to numer-
ous security and reliability concerns during the 
operations under varying scenarios and harsh envi-
ronmental conditions.

Figure 3. Summary of NN models proposed over time.

Figure 4. Design cycle of an NN-based ML 
system.
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Robustness
A common term associated with the performance 

of DNNs is robustness. Robustness is the DNN prop-
erty that determines the integrity of the network 
under varying operating conditions, and the accu-
racy of DNN outputs in the presence/absence of 
input or network alterations. This can be divided 
into two subproperties: security and reliability [29]. 
The DNN is said to be secure against an attack if 
the attacker cannot steal information [via intellec-
tual property (IP) stealing or side channel attack], 
engage the system resources [e.g., using hardware 
intrusion or denial-of-service (DoS) attack], modify 
the network parameters (e.g., by inserting hardware 
or neural-level Trojans), or render an incorrect input 
to the DNN (e.g., using an adversarial attack). In the 
case of reliability, there is no explicit attacker. The 
network is said to be reliable if it does not display any 
changes to its output, parameters, or behavior, due 
to the changes in environmental conditions, during 
fabrication and deployment.

Security vulnerabilities of ML systems
As hinted in the previous section, despite being 

highly sophisticated in learning and decision-mak-
ing, ML systems are very vulnerable to attacks. 
Depending on the type and intensity of the attack(s), 
and the application where the system is deployed, 
these ML vulnerabilities can lead to slight discrepan-
cies in the result, or can lead to lethal consequences 
in a safety-critical application [6]. This section 
describes the most common security issues in ML 
systems and DNNs at the cloud and the edge, as sum-
marized in Table 2).

Adversarial attack
Since their discovery, adversarial attacks [26] 

have been a widely studied DNN security threat 

Figure 5. Comparison between testing and 
verification for a small hypothetical system: 
ensuring behavioral correctness of the system for all 
possible inputs is not always feasible with testing.

Figure 6. Comparison between testing and 
verification for an NN-based system. Verification is 
intended to determine whether the bounded inputs 
are reachable to the correct output bounds.

 
Table 2. Summary of the various security threats and their countermeasures for ML-based systems.
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[42]–[44]. In an adversarial attack, the known DNN 
parameters are exploited to minimize the cost func-
tion corresponding to noise patterns δ x, which, when 
added to the input x, can cause misclassification, as 
shown in Figure 7. The noise added is usually imper-
ceptible, making the task of distinguishing between 
clean and malignant inputs nearly impossible. This 
can formally be represented as

	​ f (x )  ≠  f (x + δ x + EN )  s. t.   δ x  ≤  ∈​� (1)

where EN represents the noise existing in the 
physical environment even in the absence of an 
explicit attacker. The adversarial noise can lead 
to either a random incorrect output class, i.e., an 
untargeted attack scenario, a specific calculated 
output class, i.e., a targeted attack, or simply reduce 
the confidence of the correct output class [45], i.e., 
confidence reduction.

Adversarial attacks can be categorized as either 
evasive or poisoning [47], depending on the access 

of the attacker to the DNN design cycle. In evasive 
attacks, the attacker has no access to the DNN train-
ing process and the training data set. The attack is 
solely configured during the DNN inference stage, 
using either input gradients, output probability vec-
tors, or the output decision [48]–[53]. For instance, 
the fast gradient sign method (FGSM) [42] deter-
mines the direction of the loss function via the input 
gradient, scales down its value, and adds the noise 
to the input. In the Jacobian saliency map approach 
(JSMA) [54], the input gradient (Jacobian) is again 
used, but the objective is to add the noise to a sub-
set of input nodes, sufficient for misclassification. 
Other works [55], [56] make use of input gradients 
to propose adversarial attacks. TrISec [46] improves 
the imperceptibility of an adversarial attack by intro-
ducing a new methodology that uses additional 
parameters (e.g., correlation coefficient between 
the target image and the original image, and the 
structural similarity index) in the DNN training algo-
rithm. Works like [48], [54] make use of output 
labels to determine attacks in close proximity to the 
classification boundary.

In poisoning attacks [57], the attacker has access 
to the training data set/training procedure. The 
attack is implanted in the DNN during training by 
feeding the network with malicious training data. 
Figure 8 shows two examples of poisoning attacks 
that increase the probability of misclassification of a 
stop signal (red bars). The data could be poisoned 
with tailored noise [32], [58], also known as back-
door attack, or simply through random noise [45]. 
Sparsity of the network accounts for the success of 
poisoning adversarial attacks. Dormant neurons in a 
trained DNN have weights and biases too small to 
be of any practical significance to the output calcu-
lation. The existence of such neurons signifies that 
the network has the capacity to learn more. Hence, 
such networks can be trained on poisoned data (as 
shown in Figure 9). The DNN behaves correctly for 
the clean data but exhibits a malignant behavior 
for the poisoned data. A recent work demonstrates 
the use of poisoning (with noisy image patches) 
to either misclassify humans as different objects or 
completely hide a person from the object detection 
system [59].

For most of the adversarial attacks, a common 
inadequacy is to ignore the preprocessing filter-
ing stage in an ML system [31]. The preprocessing 
stage generally employs different averaging filters, to 

Figure 7. Adversarial attack on a trained 
DNN: an adversarial attack can result in the 
misclassification (either targeted or random) 
of traffic sign boards, which is a concern in 
autonomous driving [46].

Figure 8. Classification accuracy of DNN trained on 
a poisoned data set.
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smooth out any noise in input. This undermines, if 
not completely eliminates, the threat of misclassifi-
cation via adversarial attacks.

Neural-level Trojans
Another class of attacks, the neural-level Trojans 

[60], involves the insertion of additional neurons into 
a pretrained DNN by third-party training servers. The 
number of extra neurons must be minimized to avoid 
raising suspicion regarding the DNN model. Concep-
tually, similar to hardware Trojans in system hardware 
(discussed later) and backdoor attacks, the additional 
neurons in neural-level Trojans trigger malicious DNN 
behavior only when prompted by specific inputs. How-
ever, most of these attacks require to retrain the net-
work and use complex internal triggering mechanisms.

Hardware attacks
Hardware Trojans [61]–[65] are malicious com-

ponents implanted into the system hardware, which 
compromise the security of an ML system. Hardware 
Trojans can introduce undesired system behav-
ior or be dormant in the normal system operation 
and be triggered at a specific instance. They may 
leak system information, thereby aiding IP stealing 
(discussed later) or simply consume system power 
and resources.

The attack is usually instigated by an untrusted 
manufacturer/foundry, at the manufacturing stage 
of the system lifecycle. The size of the Trojan is usu-
ally small, and hence goes unnoticed. Often, the 
overall number of components on the chip is kept 
unchanged and the power trace of the Trojan is also 
minimized [66] to ensure a successful stealthy attack.

Side-channel attacks, as shown in Figure 10, are 
another type of hardware attack that is crafted using 
leaking information from the system hardware. Most 
systems leak information via side channels such 
as components’ power consumption [39]–[41], 
[67]–[69]. This information can be analyzed and 
used to: 1) compromise the security and privacy of 
the system and 2) reverse engineering and steal the 
model parameters [70], [71].

Analyzing the different side channels of a system 
enables us to target different parameters of an ML 
system. For instance, the leaking power traces close 
to the input of the DNN provide clues regarding the 
system input, whereas the information regarding 
execution times provides predictions for the net-
work architecture [40], [41]. However, a common 

limitation with most side-channel attacks is assum-
ing the absence of noise in the system. Inclusion of 
noise in the side-channel attack’s threat model gen-
erates randomness in the leaked information, which 
reduces the chances of a successful attack.

IP stealing
Attacks to steal IP are another significant security 

threat for ML systems. IP stealing involves determin-
ing either the underlying model of the ML system 
(model stealing attack), possibly without any access 
to the description or internal parameters of the 
system [72], or predicting the data the DNN was 
trained on using the available model description 
(dataset stealing attack) [73]. Both types of attacks 
are shown in Figure 11. Leaking side channels of 
the model, responses of queries to the system, and 

Figure 9. Effect of a backdoor on DNN accuracy. 
The dormant neurons (red) learn to associate the 
backdoor with a targeted misclassification label.

Figure 10. Side-channel attack based on the 
execution time of individual input queries, which 
can be used to decipher the depth of the DNN model 
and estimate the network parameters/model.
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similar behavioral network characteristics can be 
exploited, analyzed, and reverse engineered to 
obtain the underlying IP.

Defenses against security 
vulnerabilities of ML systems

To ensure correct operation in the presence of 
security attacks, several security defenses have been 
proposed over the years. This section describes 
some of the most prominent ML system defenses 
against security threats, categorized according to the 
threats they counter.

Defending against adversarial attacks
The concerns originating from adversarial attacks 

are the confidence reduction of the true output class 
and misclassification.

As shown in Figure 12, the defenses against adver-
sarial attacks are generally intended either to: 1) 
increase the perceptibility of the attack, thereby ensur-
ing that the clean and malignant inputs are percep-
tually distinguishable or 2) reduce the impact of the 
attack by enhancing the DNN’s robustness against it.

For evasion-based adversarial attacks crafted using 
input gradients, a natural defense strategy is to hide 
these gradients using a technique called gradient mask-
ing [30]. This technique, as explained in Figure 13,  
reduces the dependability of output classification by 
retraining the DNN with the output probability vector. 
Adversarial training, as shown in Figure 14a, is another 
commonly used defense [74], [75], where a trained 
DNN is retrained with adversarial inputs and the cor-
rect corresponding output labels. This improves the 
accuracy of the system in the presence of a known 
attack. Another defense, which actually constitutes a 
part of most practical ML systems, is the use of input 
preprocessing [31]. This defense smooths out, trans-
forms, and truncates the noise before it is even fed to 
the DNN. As shown in Figure 14b, this defense reduces 
the adversarial noise and hence reduces the chances 
of a successful attack. A recent defense against adver-
sarial attacks is to train robust image classifiers [76]. 
This defense exploits the fact that images contain high 
redundancy due to the strong correlation between 
neighboring pixels, so that a subset of pixels can be 
used to represent the same information. This subset 
is chosen by randomly dropping pixels from input 
images, and it is used during DNN training and infer-
ence. The drop rates are chosen randomly between 0% 
and 100% for each input image and at each epoch. The 
model trained on such subsampled data sets is robust 
against adversarial attacks.

Most of the above defenses may work against 
a naive attack. However, for a strong attack, these 
defenses may fail. Many studies show that gradient 
masking does not increase the robustness of a DNN 
[77]–[79], and hence can be broken with the use 
of a substitute model to identify the approximate 
gradient direction [80]. Attacks aware of preproc-
essing defenses [31] can break the filtering defense. 
Likewise, as studied by several works [56], [81], 
adversarial training overfits a DNN to the adversar-
ial examples and does not necessarily make the 
network more robust. Hence, a stronger attack can 
again make the DNN fail for certain inputs.

For poisoning-based adversarial attacks, a sim-
ple defense strategy is not to outsource the training 

Figure 11. IP stealing from a trained DNN: the 
objective of a stealing attack can either be 
to (a) estimate the underlying DNN model or 
(b) predict the data set used for DNN training, 
using multiple queries. (a) Model stealing attack. 
(b) Dataset stealing attack.

Figure 12. Defenses against adversarial attacks 
either increase the perceptibility of adversarial 
noise (Case I) or decrease the effect of the 
adversarial noise (Case II).
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process to a third party (i.e., local training). However, 
training is a lengthy process, requiring large compu-
tational resources. Hence, local training is not always 
feasible for large DNNs. To outsource the training 
of large DNNs, the training data can be encrypted 
before outsourcing it to the third party [34]–[36], to 
overcome the impact of data poisoning.

For attacks exploiting dormant neurons in the 
network, pruning can be employed to remove 
the (dormant) neurons that are not significant to 
the  network inputs, thereby reducing the chances 
for a successful backdoor attack. Yet, pruning-aware 
attacks [33] can be used to train only the significant 
network neurons with backdoor behavior, which 
eliminates the effectiveness of the pruning defense. 
Another defense is to fine-tune the DNN with clean 
inputs [33]. Although this does not eliminate the 
backdoors from the network, it significantly reduces 
the chances of a successful backdoor attack.

To formulate better defenses against adversarial 
attacks, a current research focus is to determine 
robustness bounds for DNNs using formal methods 
[82]–[84]. Although this area of study is relatively 
new and generally not scalable to practical DNNs, it 
has the potential to determine the actual boundaries 
where the DNNs will no longer be vulnerable to the 
adversarial attacks. However, the question of how 
the knowledge of these bounds can be used to actu-
ally prevent adversarial attacks is yet to be answered.

Defending against neural-level Trojans
Similar to adversarial attacks, the trigger for incor-

rect DNN behavior in neural-level Trojans is a mali-
cious input. Hence, techniques that manipulate or 
detect input discrepancies can reduce the effect of 
neural-level Trojans. Such approaches include input 
preprocessing [31] to smooth out the input trigger, 
input anomaly detection [85] to identify suspicious 
input patterns, and prediction distribution [58] to 
identify the bias of DNN toward the targeted output. 
Since Trojans are inserted into pretrained DNN mod-
els, their effect could also be negated using local 
training [33], i.e., training the DNN model locally 
instead of outsourcing the training process to third-
party cloud servers.

Defending against hardware attacks
Hardware Trojans [61], [86]–[89] are a hard-

ware-related security problem in ML systems. A 
hardware Trojan is a malicious modification of a 

circuit design that results in an undesired behavior, 
e.g., leakage of sensitive information, malfunction, 
or performance degradation. Since these attacks 
make use of hardware modifications, a suitable 
defense strategy against them is to use formal meth-
ods [27], particularly via equivalence checking. 
Figure 15 demonstrates the use of binary decision 
diagrams (BDDs) for equivalence checking [90] of 
simple gate-level circuits. The biggest obstacle to 
implement the equivalence checking defense is the 
absence of a golden/reference model of the actual 
system hardware to compare with the intended sys-
tem model [61], [62].

Other potential defenses against hardware Tro-
jans include side-channel analysis [39] for anomaly 
detection, and crosslayer attack modeling via bridg-
ing the gap between the hardware and software [38]. 

Figure 13. Using gradient masking to hide the 
input gradients that might be used by the attacker 
to determine the perturbations that need to be 
inserted to perform the adversarial attack.

Figure 14. (a) Improving a DNN’s accuracy in 
the presence of a known attack by training the 
data set with adversarial examples obtained 
from known adversarial attacks, i.e., adversarial 
training. (b) Reducing the effects of adversarial 
noise added to the input via input-preprocessing 
techniques such as noise filtering, quantization, 
and other input transformations. (a) Adversarial 
training. (b) Preprocessing-based defense.
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This defense often assumes that the leaking informa-
tion, e.g., power trace, of the Trojan is large enough 
to be detectable. The defense becomes ineffective 
when the assumption does not hold [66].

As mentioned in the previous section, side-
channel attacks make use of side-channel leakage 
from the system, often giving rise to other security 
vulnerabilities in ML systems, such as hardware intru-
sion [45] and IP stealing [39]. Side-channel attacks 
often rely on the exactness of the leaking informa-
tion; hence, the defense against them relies on the 
addition of random noise to system operations. For 
instance, a random selection of the next operation, 
whenever the sequence of operations does not mat-
ter, like selecting the sequence in which the image 
pixels are fed to the adder in an NN, could poten-
tially make the inference of useful knowledge from 
side channels more difficult [40], [41], [91].

Defending against IP stealing
The most common IP stealing attacks involve 

stealing private or secret information (privacy 
infringement) and the robbery of the IP (piracy).

To protect privacy of data, the simplest defenses 
include blurring, obfuscation, and even the addition 
of adversarial noise to the data [92], [93]. In prac-
tice, these approaches may not work well as they 
may not be strong enough [94]. Relatively stronger 
defenses include the use of encryption [34], [35], 
i.e., data confidentiality, while outsourcing the data 
for training. Similarly, measures to ensure IP privacy 
during third-party DNN training include the use of 
multiple training servers for joint data set [95], ver-
ifying the training procedure [96], ensuring privacy 
after training by network transformation [97], obfus-
cating defenses against reverse engineering-based 
attacks [98], [99], and isolating the hardware accel-
erators [100].

To protect IP against piracy, the rounding approach 
[101] can be a potential defense. The leaking side 
channels could be a potential vulnerability exploited 
to deploy an IP stealing attack. Hence, the same side 
channels could be used for runtime monitoring to 
secure the ML system against IP stealing [39].

Reliability threats for ML systems
Security threats are not the only cause for an ML 

system not to work as expected. This section dis-
cusses several environmental/natural factors that 
lead to reduced ML system reliability.

Hardware faults
Errors in the hardware components that build 

up a system are generally classified into transient, 
intermittent, and permanent faults [102], [103]. As 
the name implies, transient faults induce temporary 
errors in the system. Intermittent faults, on the other 
hand, may cause recurring system glitches. Like tran-
sient faults, intermittent faults can be removed from 
the system, often by the use of additional circuitry. 
Permanent faults have a lasting impact on the system 
and can be removed mainly by replacing the faulty 
hardware component.

Transient faults
The nature of applications where the ML systems 

are deployed exposes these edge devices to harsh 
operating conditions like high temperature and alti-
tude. These conditions, in addition to the increasing 
circuit clock frequencies, voltage reduction, and 
technology scaling, have been continuously increas-
ing the occurrence of transient faults in systems over 
past decades [104]. Transient faults can be random, 
i.e., occurring unpredictably, or nonrandom, i.e., 
can be reproduced under certain circumstances 
[102]. Electrostatic discharge (ESD), electromag-
netic radiation, noise in hardware interconnections, 
or flaw(s) in fabrication are among the leading fac-
tors contributing to transient faults [103], [105].

Soft errors [104] are a type of transient fault, mostly 
caused either by: 1) a high-speed particle (neutron or 
proton) strike from cosmic rays or 2) the emission 
of an alpha particle from impurities in IC packaging. 
Both particles generate a charge Qrad in the transis-
tor(s) (across the chip), and if this charge exceeds a 
certain threshold value Qth, it is likely to change the 
state of the transistor, resulting in a bit-flip. This effect, 
known as the single-event upset (SEU), is becoming a 

Figure 15. Using BDDs for hardware equivalence 
checking.
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leading cause of concern with system hardware, par-
ticularly memory chips [106], [107]. With increasing 
technology miniaturization, such bit-flips can extend 
to multiple bits within a single data word [107], 
[108], i.e., a multiple-bit upset (MBU). This phenom-
enon of random bit-flips poses a challenge to robust 
ML. These effects may lead to misclassification in ML 
systems, as shown in Figure 16a.

Intermittent faults
Such faults are intermittent and relatively unpre-

dictable, which make them difficult to repeat, ana-
lyze, and understand. Process variation [29], [109] 
is the phenomenon that results in small differences 
in the physical characteristics of seemingly identical 
circuit components during fabrication. This may 
lead to intermittent faults, potentially leading to per-
manent damage to the system chip [102]. Similarly, 
aging [110] (Figure 16b) can cause deterioration 
of system performance and functions over time. 
Another important factor contributing to intermittent 
faults in hardware is temperature under which the 
edge device is operating. Temperature effects [111] 
reduce system reliability by increasing device aging 
and error rates.

Often as the result of component aging, timing 
errors occur, where the system is unable to provide 
correct output within the expected time. Usually, 
as the error propagates through the chain of com-
ponents, the magnitude of error increases. Not only 
does this reduce ML classification accuracy, but it 
may also make the ML model vulnerable to serious 
security concerns [112].

Accessing memory with a specific access pat-
tern can introduce access pattern-dependent faults, 
which could be caused by disturbance errors. 
These faults create a security vulnerability known 
as Rowhammer [113], [114], which is the phenom-
enon where repeatedly accessing a row in a mod-
ern dynamic random access memory (DRAM) chip 
causes disturbance errors in physically adjacent 
rows. DRAM data retention failures [115]–[118] can 
also cause intermittent and unpredictable faults 
due to DRAM variable retention time and data 
pattern dependence.

Permanent faults
These faults are irreparable, where the system 

portrays fixed/repetitive errors like stuck-at faults.

Factors contributing to permanent faults include 

cosmic radiation, ESD in device, fabrication flaws 

[102], [105], [119], or recurring intermittent faults.

Neural network anomalies
Environmental noise (EN) [120], [121] has the 

same impact on edge devices as adversarial attacks 

have on DNNs

	​ f (x )   ≠  f (x + EN)​.� (2)

For instance, for an object classification system, 

possible EN could be due to fog or pollution in the 

atmosphere, which can produce effects of blurring 

on the input. Similarly, variations in data acqui-

sition by the edge sensors can also lead to faulty 

inference in an ML system. For an image-acquisition 

system deployed in an autonomous vehicle, change 

in either brightness, contrast, camera angle, or any 

other photometric transform [74], [122] can impact 

the decision-making of the vehicle and may lead to 

serious consequences [123].

The reason for such DNN anomalies is a lack of 

generalization of DNN for unseen inputs. The classi-

fication boundaries of the DNN outputs may overlap 

in the hyper-space, as depicted for a 2-D space in 

Figure 17 (top). The inputs closer to these bounda-

ries are vulnerable, and slight changes in input, even 

in the absence of a malicious attacker, may lead 

to misclassification.

Mitigation techniques for reliability 
threats in ML systems

This section discusses several mitigation 

techniques for the reliability threats in ML sys-

tems discussed in the “Reliability threats for ML 

systems” section.

Figure 16. Effects of reliability threats, i.e., 
(a) aging and (b) soft errors on ML systems.
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Mitigation techniques for hardware faults
The most notable approaches to ensure system 

reliability in the presence of various hardware faults 
are as follows.

Protection against transient faults
Generally, transient faults can be removed by a 

component reset or system reboot. However, these 
are often not the most desirable solutions. Inter-
leaving to prevent errors in consecutive bits [124], 
using additional circuitry for error detection [125], 
scrubbing to periodically remove errors to prevent 
error accumulation [117], [126], adding hardware 
redundancy and voting mechanisms [127] to rule 
out the erroneous bits, and using error detection and 
correction codes [112], [128]–[130] are generally 
the preferred choices to defend against soft errors 
in memories and logic. Recently, replicating the 
complete hardware accelerator and conjoining the 
accelerators with majority voting are also being used 
to ensure safety in ML systems. For instance, Tesla’s 
self-driving car computer has two chips deployed to 
tolerate faults [131].

Numerous approaches are available to handle 
transient errors; yet, all these approaches provide 
a tradeoff between error detection and correction 
capability, area, power consumption, and latency. 
Redundancy-based approaches can incur large area 
overhead and cost. A recent work shows that, in a 
DNN-based system, the bit-flips from 1 to 0 have a more 
drastic effect on the system’s classification accuracy 
than bit-flips from 0 to 1 [132]. This finding could be 
used for system design with stronger error-correction 
mechanisms deployed for more critical bit-flips.

Protection against intermittent faults
As system components age at different rates, 

components in the same chip may require differ-
ent levels of protection. Protection techniques that 
are consistent throughout the system, like chiplevel 
guardbanding, may thus not be sufficient. A recent 
work [133] studies dynamic protection approaches 
that ensure that the most vulnerable components 
receive the highest protection in the system. The 
same work also proposes age-aware workload 
management to age all components of the system 
at the same rate. Disturbance errors like Rowham-
mer can be mitigated via probabilistic mechanisms 
[113] and various other hardware or software tech-
niques  [114]. Online  profiling of memory cells 
[115]–[117], [134]–[136] can also help the system 
to discover and disable weak cells with intermittent 
or aging-related errors.

To detect timing errors, several studies propose to 
use Razor flip-flops [137]–[139]. Once a timing error 
is detected, error correction is usually employed by 
either introducing slack in computation, skipping a 
clock cycle, or scaling voltage to mitigate the error’s 
effect. However, these approaches may introduce a 
delay in execution as the correct result propagates to 
the output. Another mitigation approach to defend 
against timing errors is formal timing analysis [140], 
[141]. Such timing-verification approaches are 
intended to ensure that the system behaves correctly 
within the defined timing bounds.

Protection against permanent faults
Hard errors imply irreversible chip damage, for 

which the most effective solution is usually to replace 
the faulty chip/component. However, this is a costly 
solution. A relatively cost-effective alternative to chip 
replacement is discarding only the erroneous bits/byte 
of the component [142], [143], which minimizes the 

Figure 17. Inputs close to cluster boundaries 
(top) in hyperspace are most vulnerable to 
environmental adversarial transformations. 
Variation during data acquisition (middle) can 
cause misclassification, which can lead to drastic 
effects in ML systems (bottom) [77].
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cost incurred. Specific to ML systems, techniques like 
fault-aware training, pruning, mapping, and activation 
clipping are often used to address permanent faults 
[106], [144], [145], [179], [180]. In fault-aware train-
ing, the DNN is trained for different faults at multiple 
levels, like at the transistor and logic levels, as shown 
in Figure 18a. This is a computationally costly solution. 
In fault-aware pruning, all the DNN connections and 
parameters that map to faulty processing elements 
or nodes are pruned using fault maps of the baseline 
hardware (e.g., systolic array-based accelerator), as 
shown in Figure 18b. In fault-aware mapping [179], the 
saliency of DNN parameters is exploited to define a 
mapping of different segments of the DNN while retain-
ing the salient parameters. In fault-aware activation 
clipping [180], the activation values exceeding a pre-
defined threshold for fault-free NNs are clipped. This 
eliminates the need for either pruning or retraining.

Mitigation techniques against environmental 
noise

Similar to defenses against adversarial attacks  
(the “Defending against adversarial attacks” section), 
preprocessing filters [31] can reduce the effects of 
EN in DNNs. Likewise, adversarial training [75] of 
the DNN with noisy inputs could improve DNN accu-
racy for certain noise patterns. However, similar to 
the effect of using adversarial training for adversar-
ial attacks, this solution may not work well because 
adversarial training overfits the network to adversarial 
examples but does not ensure better generalization 
[56]. Since the accuracy of ML systems in the pres-
ence of EN and varying input data arises due to the 
lack of generalization to unseen inputs in the DNN, 
an alternative solution could be to train the DNN 
on a larger input data set. However, it is not always 
possible to obtain a large and diverse input data set. 
To overcome this limitation, some works propose 
the generation of synthetic data sets [146]–[149]. 
Yet, real input domains are mostly very large, multi-
dimensional, and of continuous spaces. Hence, it is 
uncertain if any finite number of synthetic input points 
could be sufficiently representative of the entire input 
domain, allowing the trained DNN to generalize for 
unseen inputs.

Formal verification for robust ML
As briefly highlighted in the “Machine learning: 

Concepts and terminology” section, testing a trained 
DNN using a labeled data set is insufficient to ensure 

reliable DNN inference. This is due to the lack of 
generalization of DNNs for unseen inputs. Recently, 
efforts have been made to understand and interpret 
the decision-making process inside the DNNs, hop-
ing to provide dependable guarantees regarding 
DNN inference. These include exploring input fea-
ture space [150], using saliency maps to understand 
DNN inference [151], and developing various certi-
fiability criteria for DNN interpretability [152]–[154].

Formal verification provides an orthogonal alter-
native to testing that provides formal or mathemat-
ical guarantees regarding NN performance at the 
edge. The use of formal verification for hardware 
and software has existed for a long time [27], [28]. 
Yet, research on verification of NNs, which forms an 
essential component of the ML system, has been an 
active domain of research for only a decade. Figure 19 
summarizes the major milestones reached in NN ver-
ification over time, according to the four major verifi-
cation categories: satisfiability (SAT) and satisfiability 
modulo theories (SMT) solving, linear programming 
(LP), theorem proving, and incomplete verification.

SAT/SMT
SAT checking is the branch of formal verification 

where the system model and the property to be ver-
ified for the system are expressed in a propositional 
logic, and written into conjunctive normal form 
(CNF), as shown in Figure 20 (bottom). The formula 
is then checked by an automatic SAT solver. Having 
an SAT output implies that a satisfying solution to the 
negation of the property, i.e., a counterexample, has 
been found. An UNSAT output implies the absence 
of any counterexample, and hence indicates that the 
stated property holds for the system. SMT is a variant 
of SAT that works similar to SAT solving, as shown 

Figure 18. Mitigation techniques for permanent 
faults in ML systems. (a) Fault-aware training. 
(b) Fault-aware pruning.
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in Figure 20 (top), but allows the use of theories 
beyond a propositional logic, like linear arithmetic.

Since SAT solving allows the use of only proposi-
tional variables (i.e., atoms), it is often the verification 
approach of choice for binarized NNs (BNNs) [82], 
[155]. SMT solvers, on the other hand, are preferred for 
verifying DNNs with real and/or integer network param-
eters [156], [157]. Another concept often associated 
with SAT-based verification approaches is counterex-
ample-guided abstraction refinement (CEGAR) [158], 
which produces more reliable verification results by 

iteratively improving the network model using counter-
examples. CEGAR and its variants provide an efficient 
verification solution when the DNN is modeled using 
overapproximation [159].

However, SAT-based verification suffers from the 
scalability problem: state-of-the-art techniques are capa-
ble of verifying only small networks [160], [161], com-
prising less than ten neurons, to medium-sized networks 
[157], comprising of up to 20,000 neurons. Although 
some works propose optimizations, like K-factoring 
[155], to reduce the size of this problem, applying these 
optimizations can be computationally costly. More rig-
orous and cost-effective optimizations can improve the 
scalability problem with SAT-based DNN verification.

Another challenge is to design more efficient 
SAT/SMT solvers. There has been a tremendous 
improvement in the state-of-the-art SAT solvers in 
recent years, with increased computational speed 
and capability to deal with larger networks. Yet, 
there is a lack of dedicated tools for DNN verifica-
tion; existing tools [156] are not scalable to larger 
networks. More powerful SAT/SMT solvers could be 
key for the improvement of DNN verification.

Linear programming
LP-based verification works by defining the sys-

tem as a set of linear constraints, and the property 

Figure 19. A decade of verification techniques for NNs.

Figure 20. Using an SMT solver for verification. CNF 
expresses program and property constraints of the 
C code (top), and SAT/SMT solver for a DNN-based 
system (bottom).
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to be verified as an objective function, as shown in 
Figure 21. The objective function can be either a min-
imization or a maximization function. The search of 
the minima or maxima is automatic and involves the 
use of linear programmers [162], [163].

For DNN verification, LP is generally used to 
check the robustness of the network against adver-
sarial attacks. The objective is to determine the 
smallest noise (or noise margin) that satisfies linear 
constraints of the network but causes misclassifica-
tion at network output [81], [84].

As the name suggests, an inherent limitation of LP 
is that it requires the constraints to be linear. For DNNs, 
this poses a problem due to the presence of nonlinear 
activation functions. Some works [164], [165], as will 
be discussed in the “Incomplete verification” section, 
replace nonlinear activation functions by their linear 
approximations. This yields incomplete verification 
results since a linear representation is insufficient to 
fully replicate the behavior of the actual nonlinear 
activation function. Another approach, proposed for 
rectified linear unit (ReLU)-based networks, is input 
bisection for selected network nodes [166]. ReLU 
is a piecewise linear function that works like a half-
way rectifier: output is zero if the input is negative, 
but the output equals the input for all nonnegative 
input values. A calculated input bisection splits ReLU 
into two linear functions, at the cost of a larger size-
verification problem.

The use of Big-M encoding1 is proposed in several 
recent works [57], [83], [168]–[170]. Although the 
approach ensures reliable verification results, with-
out a significant increase in the size of the problem, 
it also suffers from the scalability problem. Reduc-
ing the number of constraints by eliminating the 
inactive neurons [84], and exploiting the sparsity of 
practical DNNs may allow the effective verification 
of practical-sized ML systems.

Interactive theorem proving
Theorem proving is a type of formal verification in 

which the system and its properties are defined mathe-
matically, and the properties are verified for the system 
by rules of natural deduction [171]. The verification 
example demonstrated in Figure 5 shows how natu-
ral deduction-based reasoning works. Figure 22 gives 

1The Big-M technique is used for the verification of ReLU-based networks, where a 
binary indicator variable Y is added to the linear constraints to indicate the linear 
region of the activation function to which the constraint belongs, while M provides 
a valid output upper bound that is greater than the maximum output value of every 
ReLU node in the network. We refer the reader to [167] for details of the technique.

a more generic view of how theorem proving works. 
Generally, for the propositional logic and simple cir-
cuits, state-of-the-art theorem provers are able to ver-
ify the system without human intervention, i.e., these 
systems can be verified by automatic theorem provers. 
However, for complex systems, like DNNs, human 
guidance is essential, and hence the verification of 
such systems is done via interactive theorem proving.

For verification, the system is represented as a 
logical model governed by mathematical princi-
ples. The property is similarly expressed as a formal 
proof goal. The objective is to use axioms and rules 
derived from these axioms to check if the proper-
ties, i.e., system specifications, hold for the system 
model, i.e., the implementation.

As expected from a human-guided verification 
approach, interactive theorem proving is difficult 
to execute for two reasons. First, it requires an 
in-depth knowledge of the underlying system for 
realistic system modeling. Second, it demands the 

Figure 21. Using a linear programmer to define the 
linear constraints and the objective function (top), 
and verification of a DNN-based system with a 
linear programmer solver (bottom).

Figure 22. Using a theorem prover for the 
verification of a half-adder (top), and mathematical 
model and theorems of theorem proving for a DNN-
based system (bottom).
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verifier to have an expert understanding of: 1) why 
a certain property holds for the system; 2) what are 
the required assumptions; and 3) how to prove the 
property on the basis of sound mathematical prin-
ciples. Hence, it is no wonder that interactive theo-
rem proving has been a scarcely explored research 
domain for DNN verification. Murphy et al. [172] 
verify the perceptron convergence theorem, but 
they focus on a very small subset of DNNs called 
binary classifiers that may not be easy to adopt for 
large state-of-the-art DNNs.

For more practical theorem-proving-based DNN 
verification approaches, the basic need is to under-
stand how DNNs work, why they make certain 
decisions, and what are the mathematical reasons 
behind their behavior. The perceptron convergence 
theorem [2], [173] was proposed almost six decades 
before it was formally verified by Murphy et al. [172]. 
Hence, understanding and developing the theory 
behind DNN operation seem to be a logical step 
before theorem proving could be successfully used 
for DNN verification.

Incomplete verification
Completeness is a notion that decides whether a 

system model is sufficient to prove everything about 
the system. Incomplete verification often makes use 
of abstract interpretation, linear approximation, and 
other similar approaches to formally model the sys-
tem [174]–[176]. As a result, the system model is 
not an exact representation of the actual system but 
rather an overapproximation. Verification is then 
performed on this approximate model, as shown 
in Figure 23. It is important to note that simulation/
testing, which also provides incomplete results, must 
not be confused with incomplete verification. This is 
because, in testing, the system is considered a black 

box, and the tester analyzes the system behavior by 
feeding the black box with a finite set of inputs and 
recording the output. In contrast, in incomplete ver-
ification, the system is a white box representing the 
simplified version of the actual system, on which for-
mal verification is performed.

Since incomplete verification involves verifying 
a simplified version of the actual system model, 
this makes the approach scalable, even to larger 
DNNs [164], [165]. To improve the completeness 
of verification, we can use abstraction refinement 
approaches like CEGAR [158], [159]. This does not 
entirely eliminate the problem of incompleteness of 
verification, but improves the reliability of verifica-
tion results.

Incomplete verification often leads to false posi-
tives [164], [165]. Whenever the incomplete verifier 
provides counterexamples, they are actual scenarios 
where the property does not hold for the system. If 
the verifier provides no counterexamples, the system 
may still be unsafe or the property being verified may 
still not hold for some inputs to the system [177].

Incomplete verification is scalable and, hence, is 
an attractive verification alternative for DNNs. Yet, 
its inherent incompleteness provides the biggest 
limitation to its accuracy. A possible solution is to 
trade off some scalability of incomplete verification 
with completeness [178]. This can be accomplished 
by iteratively refining the network model until it 
matches the exact system model [158], or combin-
ing incomplete verification with other complete veri-
fication approaches like SMT solvers or LP.

Open challenges and discussion
Although ML is a rapidly evolving domain, it 

will probably pass a long time until ML systems are 
considered robust. In ML systems, similar to other 
systems, a single vulnerability is sufficient to pose 
a security or reliability issues that might prevent the 
system from obtaining accurate results. However, it 
is very challenging to provide strong robustness guar-
antees, because we need to deal with a wide range of 
security and reliability threats, while considering the 
probabilistic/stochastic nature of the ML algorithms. 
This section discusses some important (in our view) 
open challenges for achieving robust ML systems.

ML systems have numerous security issues mainly 
related to: 1) outsourced training; 2) untrusted 
fabrication foundries; and 3) attacker access to 
the environment in which the system is deployed. 

Figure 23: Using incomplete verification for: 
1) verifying a continuous domain program (top) 
and 2) verifying a DNN-based system (bottom).
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Among  these security issues, some of the most 
important are the following.

•	 Securing training data sets before outsourcing 
them for training. This may involve encrypting 
the training data set from the cloud servers to 
ensure IP privacy or minimizing the impact of 
data poisoning attacks.

•	 Obfuscating ML hyper-parameters, algorithms, 
and IPs. There are several defenses to success-
fully obfuscate ML hyper-parameters, algorithms, 
and IPs using blurring and noise addition. How-
ever, as indicated earlier, these techniques do not 
often work well in practice. Hence, a prospective 
obfuscation method could be the inclusion of 
various obfuscation techniques in a single frame-
work, and random switching between these tech-
niques to ensure a more secure ML system.

•	 Ensuring fairness of training, i.e., preventing the 
bias of the trained NN. Gradient-based adversar-
ial input generation and counterexamples gener-
ated via formal verification of NNs can be used 
to identify the bias in training. This method is 
based on the observation that adversarial inputs 
are more likely to identify the output classes to 
which the trained NN is biased.

•	 Validating the functional and behavioral cor-
rectness of ML hardware. Formal verification 
methods may be required to provide stronger 
guarantees on the ML hardware operation by 
performing verification under diverse security 
and reliability conditions.

•	 Minimizing the accessibility to side-channel leak-
ages. This can be achieved by minimizing the 
sharing of resources like memory and power, 
thereby ensuring the hardware isolation of the 
ML system. However, this may be a costly solution 
for most ML applications. Another prospective 
solution to ensure minimal access of an attacker 
to the side-channel leakages can be the introduc-
tion of complementary synthetic noise to nullify 
the side-channel signatures of the system.

The DNN model and the hardware that run the 
model are both vulnerable to inconsistencies in per-
formance over their lifetime. Major unresolved relia-
bility challenges in ML systems include:

•	 Developing frameworks to emulate ML systems 
under diverse operating conditions. This is 
essential to: 1) study and better understand the 

reliability challenges of the systems deployed in 
the physical environment; 2) assess the perfor-
mance of the available mitigation techniques; 
and 3) analyze the tradeoffs between these 
approaches to identify the solution that ensures 
the highest system reliability.

•	 Providing a fault-safe runtime in the case of sys-
tem discrepancies. Currently, such fault-safe 
techniques include the use of redundancies at 
the hardware and software levels, which ensure 
that, in the case of a component malfunction-
ing, the overall performance of the system is not 
affected. However, these measures are generally 
very costly and, hence, there still exists the need 
for better fault-safe mechanisms for ML systems.

•	 Hampering the progression of subsystem failures 
to the interconnected components. This requires 
mitigation approaches that can provide cross-
layer reliability to ensure that a failure in one sys-
tem component does not propagate and affect 
the results of the next system component(s).

Formal verification is a promising way to pro-
vide strong robustness guarantees in ML systems 
via mathematical proofs. The major challenges for 
making formal verification a practical tool to ensure 
robustness include:

•	 Formally modeling the nonlinear, nonconvex 
behavior of ML systems. Complete verification 
with existing modeling approaches (e.g., Big-M) 
is often not the optimal solution due to the large 
number of generated clauses and/or constraints. 
Incomplete verification is also not the optimal 
solution because it may lead to false-positive 
results due to overapproximation.

•	 Incorporating the uncertainties of the real world 
into the formal system model. Namely, the veri-
fication of the system under different reliability 
factors, e.g., EN.

•	 Inspecting system behavior for all possible inputs. 
Formal verification is widely acclaimed due to its 
rigorous analysis and complete results. However, 
due to the complexity of NN verification, current 
approaches rely on applying verification to only 
a subset of inputs (i.e., seed inputs).

Providing complete guarantees regarding sys-
tem behavior requires more rigorous verification 
approaches. Moreover, end-to-end formal verifica-
tion of the complete system, which is composed of 
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multiple ML-based subsystems and control subsys-

tems, is a significant research challenge.

•	 Optimizing the verification goal to reduce the 

computational complexity of the verification 

problem. As the size of the underlying ML system 

increases, the size of its formal representation 

also increases. This requires large computational 

overhead and time to formally verify ML systems. 

Hence, simplifying the verification problem prior 

to the actual verification can reduce the compu-

tational complexity of the problem.

•	 Improving the timing efficiency of verification, 

while ensuring the completeness of verification 

results. There is a tradeoff between the timing 

cost of verification and the completeness of the 

verification results. With the development of 

efficient verification tools, the bridge between 

timing efficiency and completeness has been 

reduced. However, achieving the most optimal 

tradeoff between timing efficiency and com-

pleteness still remains an open challenge.

•	 Scaling the verification algorithm to be applicable 

to practically sized DNNs. With improvements in 

verification tools and formalization approaches, 

the size of the DNNs that can be formally verified 
is increasing gradually.

Tackling the previous challenges and research 
directions is important for providing secure and 
reliable ML systems. However, as ML is a domain 
that advances very rapidly, there will probably 
be new challenges and research directions that 
will become important with the emergence of 
new ML models, deeper DNNs, unreliable hard-
ware with reduced technology nodes, and new 
attack models.

ML, particularly NNs, forms an essential 
component of modern CPSs. However, due to out-
sourced training, compromised foundries, stealthy 
attackers, system aging, and the harsh operating 
environment of these systems, both at the sys-
tem cloud and edge levels, they are vulnerable to 
numerous security and reliability concerns. This 
survey highlights: 1) the most prominent security 
and reliability challenges for ML systems; 2) the mit-
igation approaches to defend the systems against 
these challenges; and 3) formal methodologies for 
verifying trained NNs. This survey also summarizes 
the most important open challenges that hamper 
robust ML systems.� 

Appendix

NN Description Pictorial Representation of the Network

Feed-Forward NN

These are the NNs with neurons in every layer 
impacting only the decision of neurons in the 
successive layers. Hence, the networks are cycle/
loop - free. The feed-forward networks are also 
called fully connected when every neuron in the 
preceding layer is connected to every neuron in 
the successive layer.

RNN

RNNs comprise of feedback loop(s); hence, 
neurons in one layer can impact the values 
of neurons in successive as well as preceding 
layers. This provides temporal characteristics 
to the RNNs, i.e., the values of the neurons (or 
the internal memory of the network) varies 
temporally.

CNN

Unlike the earlier fully connected networks, 
CNNs share network weights via convolution 
operation. This improves the local spatial cor-
relation of the input, and ensures that only the 
most prominent input features of the input are 
carried to the successive network layers.

Continued
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NN Description Pictorial Representation of the Network

GAN

GANs involve an interplay between a generator 
and a discriminator for the training of the net-
work. The generator produces synthetic inputs 
in the same latent space as the training dataset, 
while the discriminator learns to distinguish the 
original data from the synthetic data. Hence, 
the objective of the generator is to maximize 
the error (i.e., generate more realistic synthetic 
inputs) while the discriminator minimizes the 
error by learning to differentiate between real 
and synthetic input.

Capsule Network  
(CapsNet)

CapsNets are build up of layers that operate on 
vectors, where each element of the vector repre-
sents the instantiation parameter that deduces 
whether the feature represented in the vector is 
actually present in the input. The length of the 
vector, on other hand, represents the instan-
tiation probability. The connections between 
two consecutive capsule layers are learned 
dynamically during inference through the 
routing-by-agreement algorithm, which iteratively 
updates the coupling coefficients of the CapsNet. 
In this way, capsules learn to interpret high level 
features in a hierarchical manner.

Spiking NN

All the NNs discussed above assume a nor-
malized firing frequency for the neurons. This 
neglects the dynamic behavior of the inputs like 
speech. SNNs make use of spike trains to depict 
the spatio-temporal characteristics of the input. 
Hence, SNNs are an important class of NNs par-
ticularly for timedependent applications.
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