
30 2168-2356/20©2020 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Survey

Editor’s note:
Currently, machine learning (ML) techniques are at the heart of smart
cyber–physical systems (CPSs) and Internet-of-Things (IoT). This article
discusses various challenges and probable solutions for security attacks
on these ML-inspired hardware and software techniques.

—Partha Pratim Pande, Washington State University

 Fueled by independent developments in
semiconductor technology, computing, commu-
nication, control signal generation, sensors, and
actuators, the concept of a unified smart cyber–
physical system (CPS) has evolved into a ubiqui-
tous paradigm. CPS, as the name implies, links the
cyber and the physical environments with smart
control. Together with the evolution of Internet-of-
Things (IoT), which provides remote access to the
CPSs for controlling and monitoring the intercon-
nected computing devices, the standard architec-
ture of a smart CPS comprises three major layers [1]:
edge, fog, and cloud. The edge of the system is what

Robust Machine
Learning Systems:
Challenges, Current
Trends, Perspectives,
and the Road Ahead
Muhammad Shafique and Mahum Naseer
Technische Universität Wien (TU Wien)

Theocharis Theocharides and
Christos Kyrkou
University of Cyprus

Onur Mutlu and Lois Orosa
ETH Zürich

Jungwook Choi
Hanyang University

Digital Object Identifier 10.1109/MDAT.2020.2971217
Date of publication: 3 February 2020; date of current version:
20 April 2020.

connects the system to the physical
environment, for instance, the sensors.
The fog is the central layer where most
system computations generally occur.
However, to reduce transmission over-
head or for data privacy, initial compu-
tations may occur at the edge too. The
cloud is what connects the system to a

large-scale cyberspace, which performs extensive
processing, storage, and communication between
different CPSs.

Improving the decision-making, monitoring, and
control capabilities across different CPS/IoT layers is
critical for emerging applications. As the complexity,
volume, and rate of data produced by IoT with many
smart CPSs are increasing, machine learning (ML)
has emerged as a dominant paradigm for analytics,
decision-making, perception, and understanding.
Consequently, reliability and security vulnerabilities
of ML systems can have cascading effects on smart
CPS applications and critically impact ML operation
across all layers.

The most recent developments in ML, especially
in deep learning, evolved from the concept of a
single-layer neural network (NN), the perceptron [2],

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

31March/April 2020

to the multilayer perceptron (MLP) [2] and the
current intricate multilayer deep NNs (DNNs) [3],
[4], with the objective of approaching and even
exceeding human decision-making capabilities
for a certain set of tasks. Due to their effectiveness
at handling large amounts of data, learning (and
sometimes relearning [5]) input characteristics,
and demonstrating high accuracy during infer-
ence of unseen inputs, ML systems have prolifer-
ated to numerous real-world applications. These
include object detection [6], face recognition [7],
speech recognition [8], spam filtering [9], mal-
ware detection [10], smart grids [11], and even
safety-critical applications such as autonomous
driving [12], intelligent transportation [13], and
healthcare [14], [15], where errors may lead to
catastrophic results.

Despite their high inference accuracy in prac-
tical applications, ML systems are highly vulnera-
ble to security and reliability threats at both the
cloud and the edge. Poisoning the training data
(e.g., by inserting random or crafted noise to the
data) with incorrectly labeled inputs, inserting
malicious components into the system hardware,
polluting inputs with imperceptible noise during
inference (i.e., during the run-time operation of
a system), and monitoring system-side channels
to deduce the underlying model are some of the
ways in which an attacker can breach the secu-
rity of an ML system. Even in the absence of an
explicit attacker, process variation during hard-
ware fabrication, memory errors, and environ-
mental conditions around the system during
training and inference can compromise the relia-
bility of an ML system. Approaches to defend ML
systems against these concerns exist, but each
approach has its own limitations. Figure 1 summa-
rizes both the security and reliability threats that
can affect the accuracy of ML systems and their
respective countermeasures.

In this article, we aim to provide a comprehensive
overview of vulnerabilities that affect modern ML
systems, survey state-of-the-art attacks and defense
mechanisms, describe different solution directions
and challenges, and identify potential promising
avenues to research.

To ease reading, we provide the list of the acro-
nyms used in this article in Table 1 and the rest of
this article is organized as shown in Figure 2.

ML: Concepts and terminology
An ML system, like any other traditional system,

takes in the input(s) and generates the correspond-
ing output(s). However, unlike traditional systems,
the ML system is capable of learning via input fea-
tures and using the learned features in decision-
making, which provide ML systems with the ability
to perform tasks that are very challenging to perform
using traditional systems.

NNs are often involved in the main decision-
making of many modern ML systems. An NN com-
prises an input layer that connects the external
environment to the ML system, an output layer that
outputs a decision, and hidden layer(s) sandwiched
between the input and output layers. State-of-the-art
ML systems commonly use DNNs with two or more
hidden layers. Each layer comprises neurons or
nodes which connect to other neurons in the corre-
sponding layers via a nonlinear activation function.
Each neuron has its associated parameters, i.e.,
weight, bias, and/or filter coefficient. A detailed
overview of NNs can be found in [16] and [17].

Neural network taxonomy
If the input propagates through the network in

only one direction, the network is said to be feedfor-
ward. If there are feedback loops in the network, the
network is called a recurrent NN (RNN) [18]. Long
short-term memories (LSTMs) [19] are a branch of
recurrent networks that retain information for a long
duration, which makes them well suited for time-se-
ries prediction. When every neuron in one layer is
connected to “all” neurons in the preceding layer,
the network is said to be fully connected; otherwise,
the network is sparse.

Since their advent, NNs have progressively
improved over three generations (Figure 3). The
details of the NN types of each generation can be
found in the Appendix.

First generation of NNs: The first generation of NNs
[20] is comprised of single-layer and MLPs [21]. MLPs
are generally made up of multiple fully connected lay-
ers connected with thresholding activations.

Second generation of NNs: To reduce the num-
ber of parameters in a network, this generation of
NN introduces convolutional NNs (CNNs), which
make use of convolutional layers comprising of con-
volutional filters to extract important features from
the input, while providing a certain degree of shift

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

32 IEEE Design&Test

Survey

invariance to the network [22]. A convolutional layer
typically uses continuous nonlinear activations, and
it is often followed by a pooling layer. Pooling lay-
ers reduce the network parameters even further by
retaining only the most important features from the
preceding layer, which leads to information loss. NNs
of this generation are increasingly being used in prac-
tical ML systems.

A relatively new approach to solve the problem
of information loss in CNNs is the use of capsule net-
works (CapsNets) [23]. CapsNets have hidden layers
comprised of interconnected vectors that have input
features and input probabilities, which allow these
networks to learn spatial correlations between input
features. As a result, CapsNets are able to infer high-
level entities quite similarly to human perception.

Figure 1. Overview of threats and challenges associated with ML-based systems: reliability
threats and corresponding mitigation techniques (bottom), and security attacks and corresponding
defenses (top).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

33March/April 2020

Another interesting approach toward NNs is
the generative adversarial networks (GANs) [24].
These networks make use of the simultaneous
interplay between a generator and a discrimi-
nator, where the generator produces realistic
synthetic inputs, while the discriminator learns
to differentiate between the real and synthetic
inputs. This enables the NNs to generate syn-
thetic outputs that are very difficult to distinguish
from the real ones.

Third generation of NNs: This generation of NNs
makes use of spiking NNs (SNNs) [25] in an attempt
to emulate human brain-like functioning. Unlike the
networks discussed earlier, which consider the nor-
malized firing frequency of neurons, SNNs use spike
trains to mimic the spatiotemporal characteristics of
the biological neurons.

Neural network design cycle
Figure 4 provides an overview of the NN-based

ML design cycle, which can be categorized in the
training and inference stages. Training is typically
performed at the cloud, whereas inference is typi-
cally performed at the edge in real-world smart CPSs
(e.g., autonomous vehicles and wearable healthcare
devices). In certain IoT/CPS systems, which are not
constrained with resources or real timeliness, infer-
ence may also be performed at the fog or cloud
(e.g., predictions on social networks and large-scale
hospital data).

Training: Before deploying the NN into an ML sys-
tem, the NN must be trained. Training is a resource-in-
tensive process, generally carried out by third-party
cloud servers, which involves the use of a training
data set to find suitable values for the network
parameters. Training is composed of a forward pass
and a backward pass. The forward pass calculates

the predicted output values by propagating inputs

through the network, using the current parameter

values. The backward pass updates the network

parameters, while minimizing the loss function asso-

ciated with correct and predicted output values. This

process (i.e., a forward pass and a backward pass),

when repeated once for all the samples in the train-

ing data set, is called an epoch. The overall training

process of an NN involves several epochs.

At the end of each epoch, the accuracy of the

network is analyzed for some unseen data, which

is not part of the training data set, i.e., the valida-

tion data set. The result of this testing can be used

to fine tune the network hyper-parameters, like the

number of layers, and select the best trained model.

The training process then resumes and the network

 
Table 1. List of acronyms used in this survey.

Figure 2. Organization of this article.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

34 IEEE Design&Test

Survey

parameters are again updated using the training
data set until either the process reaches the maxi-
mum number of epochs (or cycles), or the network
reaches the desired level of accuracy with the vali-
dation data set.

The most common way to check the final infer-
ence accuracy of a trained network is to use a
testing data set. If the trained network is able to
classify testing inputs correctly for more than the
desired number of testing inputs, the network is
considered suitable for deployment into a prac-
tical system. However, a DNN might misclassify
an input that is perceptually similar to another
input correctly identified by the same DNN [26].

To ensure the security, reliability, and safety of
ML systems for safety-critical applications, e.g.,
autonomous vehicles and smart healthcare, it is
imperative to develop a framework to analyze and
verify these critical misclassifications. An orthogo-
nal research direction, therefore, is to use formal
verification for ascertaining the dependability of
the trained DNN.

Although an established research domain [27],
[28], formal verification started gaining interest in
the ML research community only since the last dec-
ade. Formal verification is an approach to check the
correct behavior of a system on the basis of sound
mathematical reasoning. Unlike testing, verification
provides guarantees regarding system accuracy,
independent of “specific” system inputs. Hence,
as shown in Figure 5, the guarantees provided by
verification are valid for the entire (infinite) input
domain, whereas those provided by testing are
limited only to the (finite) tested data. In terms of
ML systems, due to the complexity of the underlying
system, the objective of verification is usually to ver-
ify the correctness of the network for bounded input
regions, as demonstrated in Figure 6, rather than for
the entire input domain.

Inference: A trained and tested/verified NN can be
deployed in a real-world ML system. At this stage, the
NN performs classification/decision-making using
actual, previously unseen, data (i.e., in real time).
ML inference is typically carried out at the edge of
the IoT/CPSs, thereby exposing the system to numer-
ous security and reliability concerns during the
operations under varying scenarios and harsh envi-
ronmental conditions.

Figure 3. Summary of NN models proposed over time.

Figure 4. Design cycle of an NN-based ML
system.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

35March/April 2020

Robustness
A common term associated with the performance

of DNNs is robustness. Robustness is the DNN prop-
erty that determines the integrity of the network
under varying operating conditions, and the accu-
racy of DNN outputs in the presence/absence of
input or network alterations. This can be divided
into two subproperties: security and reliability [29].
The DNN is said to be secure against an attack if
the attacker cannot steal information [via intellec-
tual property (IP) stealing or side channel attack],
engage the system resources [e.g., using hardware
intrusion or denial-of-service (DoS) attack], modify
the network parameters (e.g., by inserting hardware
or neural-level Trojans), or render an incorrect input
to the DNN (e.g., using an adversarial attack). In the
case of reliability, there is no explicit attacker. The
network is said to be reliable if it does not display any
changes to its output, parameters, or behavior, due
to the changes in environmental conditions, during
fabrication and deployment.

Security vulnerabilities of ML systems
As hinted in the previous section, despite being

highly sophisticated in learning and decision-mak-
ing, ML systems are very vulnerable to attacks.
Depending on the type and intensity of the attack(s),
and the application where the system is deployed,
these ML vulnerabilities can lead to slight discrepan-
cies in the result, or can lead to lethal consequences
in a safety-critical application [6]. This section
describes the most common security issues in ML
systems and DNNs at the cloud and the edge, as sum-
marized in Table 2).

Adversarial attack
Since their discovery, adversarial attacks [26]

have been a widely studied DNN security threat

Figure 5. Comparison between testing and
verification for a small hypothetical system:
ensuring behavioral correctness of the system for all
possible inputs is not always feasible with testing.

Figure 6. Comparison between testing and
verification for an NN-based system. Verification is
intended to determine whether the bounded inputs
are reachable to the correct output bounds.

 
Table 2. Summary of the various security threats and their countermeasures for ML-based systems.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

36 IEEE Design&Test

Survey

[42]–[44]. In an adversarial attack, the known DNN
parameters are exploited to minimize the cost func-
tion corresponding to noise patterns δ x, which, when
added to the input x, can cause misclassification, as
shown in Figure 7. The noise added is usually imper-
ceptible, making the task of distinguishing between
clean and malignant inputs nearly impossible. This
can formally be represented as

	​ f (x )  ≠  f (x + δ x + EN )  s. t.   δ x  ≤  ∈​� (1)

where EN represents the noise existing in the
physical environment even in the absence of an
explicit attacker. The adversarial noise can lead
to either a random incorrect output class, i.e., an
untargeted attack scenario, a specific calculated
output class, i.e., a targeted attack, or simply reduce
the confidence of the correct output class [45], i.e.,
confidence reduction.

Adversarial attacks can be categorized as either
evasive or poisoning [47], depending on the access

of the attacker to the DNN design cycle. In evasive
attacks, the attacker has no access to the DNN train-
ing process and the training data set. The attack is
solely configured during the DNN inference stage,
using either input gradients, output probability vec-
tors, or the output decision [48]–[53]. For instance,
the fast gradient sign method (FGSM) [42] deter-
mines the direction of the loss function via the input
gradient, scales down its value, and adds the noise
to the input. In the Jacobian saliency map approach
(JSMA) [54], the input gradient (Jacobian) is again
used, but the objective is to add the noise to a sub-
set of input nodes, sufficient for misclassification.
Other works [55], [56] make use of input gradients
to propose adversarial attacks. TrISec [46] improves
the imperceptibility of an adversarial attack by intro-
ducing a new methodology that uses additional
parameters (e.g., correlation coefficient between
the target image and the original image, and the
structural similarity index) in the DNN training algo-
rithm. Works like [48], [54] make use of output
labels to determine attacks in close proximity to the
classification boundary.

In poisoning attacks [57], the attacker has access
to the training data set/training procedure. The
attack is implanted in the DNN during training by
feeding the network with malicious training data.
Figure 8 shows two examples of poisoning attacks
that increase the probability of misclassification of a
stop signal (red bars). The data could be poisoned
with tailored noise [32], [58], also known as back-
door attack, or simply through random noise [45].
Sparsity of the network accounts for the success of
poisoning adversarial attacks. Dormant neurons in a
trained DNN have weights and biases too small to
be of any practical significance to the output calcu-
lation. The existence of such neurons signifies that
the network has the capacity to learn more. Hence,
such networks can be trained on poisoned data (as
shown in Figure 9). The DNN behaves correctly for
the clean data but exhibits a malignant behavior
for the poisoned data. A recent work demonstrates
the use of poisoning (with noisy image patches)
to either misclassify humans as different objects or
completely hide a person from the object detection
system [59].

For most of the adversarial attacks, a common
inadequacy is to ignore the preprocessing filter-
ing stage in an ML system [31]. The preprocessing
stage generally employs different averaging filters, to

Figure 7. Adversarial attack on a trained
DNN: an adversarial attack can result in the
misclassification (either targeted or random)
of traffic sign boards, which is a concern in
autonomous driving [46].

Figure 8. Classification accuracy of DNN trained on
a poisoned data set.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

37March/April 2020

smooth out any noise in input. This undermines, if
not completely eliminates, the threat of misclassifi-
cation via adversarial attacks.

Neural-level Trojans
Another class of attacks, the neural-level Trojans

[60], involves the insertion of additional neurons into
a pretrained DNN by third-party training servers. The
number of extra neurons must be minimized to avoid
raising suspicion regarding the DNN model. Concep-
tually, similar to hardware Trojans in system hardware
(discussed later) and backdoor attacks, the additional
neurons in neural-level Trojans trigger malicious DNN
behavior only when prompted by specific inputs. How-
ever, most of these attacks require to retrain the net-
work and use complex internal triggering mechanisms.

Hardware attacks
Hardware Trojans [61]–[65] are malicious com-

ponents implanted into the system hardware, which
compromise the security of an ML system. Hardware
Trojans can introduce undesired system behav-
ior or be dormant in the normal system operation
and be triggered at a specific instance. They may
leak system information, thereby aiding IP stealing
(discussed later) or simply consume system power
and resources.

The attack is usually instigated by an untrusted
manufacturer/foundry, at the manufacturing stage
of the system lifecycle. The size of the Trojan is usu-
ally small, and hence goes unnoticed. Often, the
overall number of components on the chip is kept
unchanged and the power trace of the Trojan is also
minimized [66] to ensure a successful stealthy attack.

Side-channel attacks, as shown in Figure 10, are
another type of hardware attack that is crafted using
leaking information from the system hardware. Most
systems leak information via side channels such
as components’ power consumption [39]–[41],
[67]–[69]. This information can be analyzed and
used to: 1) compromise the security and privacy of
the system and 2) reverse engineering and steal the
model parameters [70], [71].

Analyzing the different side channels of a system
enables us to target different parameters of an ML
system. For instance, the leaking power traces close
to the input of the DNN provide clues regarding the
system input, whereas the information regarding
execution times provides predictions for the net-
work architecture [40], [41]. However, a common

limitation with most side-channel attacks is assum-
ing the absence of noise in the system. Inclusion of
noise in the side-channel attack’s threat model gen-
erates randomness in the leaked information, which
reduces the chances of a successful attack.

IP stealing
Attacks to steal IP are another significant security

threat for ML systems. IP stealing involves determin-
ing either the underlying model of the ML system
(model stealing attack), possibly without any access
to the description or internal parameters of the
system [72], or predicting the data the DNN was
trained on using the available model description
(dataset stealing attack) [73]. Both types of attacks
are shown in Figure 11. Leaking side channels of
the model, responses of queries to the system, and

Figure 9. Effect of a backdoor on DNN accuracy.
The dormant neurons (red) learn to associate the
backdoor with a targeted misclassification label.

Figure 10. Side-channel attack based on the
execution time of individual input queries, which
can be used to decipher the depth of the DNN model
and estimate the network parameters/model.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

38 IEEE Design&Test

Survey

similar behavioral network characteristics can be
exploited, analyzed, and reverse engineered to
obtain the underlying IP.

Defenses against security
vulnerabilities of ML systems

To ensure correct operation in the presence of
security attacks, several security defenses have been
proposed over the years. This section describes
some of the most prominent ML system defenses
against security threats, categorized according to the
threats they counter.

Defending against adversarial attacks
The concerns originating from adversarial attacks

are the confidence reduction of the true output class
and misclassification.

As shown in Figure 12, the defenses against adver-
sarial attacks are generally intended either to: 1)
increase the perceptibility of the attack, thereby ensur-
ing that the clean and malignant inputs are percep-
tually distinguishable or 2) reduce the impact of the
attack by enhancing the DNN’s robustness against it.

For evasion-based adversarial attacks crafted using
input gradients, a natural defense strategy is to hide
these gradients using a technique called gradient mask-
ing [30]. This technique, as explained in Figure 13,
reduces the dependability of output classification by
retraining the DNN with the output probability vector.
Adversarial training, as shown in Figure 14a, is another
commonly used defense [74], [75], where a trained
DNN is retrained with adversarial inputs and the cor-
rect corresponding output labels. This improves the
accuracy of the system in the presence of a known
attack. Another defense, which actually constitutes a
part of most practical ML systems, is the use of input
preprocessing [31]. This defense smooths out, trans-
forms, and truncates the noise before it is even fed to
the DNN. As shown in Figure 14b, this defense reduces
the adversarial noise and hence reduces the chances
of a successful attack. A recent defense against adver-
sarial attacks is to train robust image classifiers [76].
This defense exploits the fact that images contain high
redundancy due to the strong correlation between
neighboring pixels, so that a subset of pixels can be
used to represent the same information. This subset
is chosen by randomly dropping pixels from input
images, and it is used during DNN training and infer-
ence. The drop rates are chosen randomly between 0%
and 100% for each input image and at each epoch. The
model trained on such subsampled data sets is robust
against adversarial attacks.

Most of the above defenses may work against
a naive attack. However, for a strong attack, these
defenses may fail. Many studies show that gradient
masking does not increase the robustness of a DNN
[77]–[79], and hence can be broken with the use
of a substitute model to identify the approximate
gradient direction [80]. Attacks aware of preproc-
essing defenses [31] can break the filtering defense.
Likewise, as studied by several works [56], [81],
adversarial training overfits a DNN to the adversar-
ial examples and does not necessarily make the
network more robust. Hence, a stronger attack can
again make the DNN fail for certain inputs.

For poisoning-based adversarial attacks, a sim-
ple defense strategy is not to outsource the training

Figure 11. IP stealing from a trained DNN: the
objective of a stealing attack can either be
to (a) estimate the underlying DNN model or
(b) predict the data set used for DNN training,
using multiple queries. (a) Model stealing attack.
(b) Dataset stealing attack.

Figure 12. Defenses against adversarial attacks
either increase the perceptibility of adversarial
noise (Case I) or decrease the effect of the
adversarial noise (Case II).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

39March/April 2020

process to a third party (i.e., local training). However,
training is a lengthy process, requiring large compu-
tational resources. Hence, local training is not always
feasible for large DNNs. To outsource the training
of large DNNs, the training data can be encrypted
before outsourcing it to the third party [34]–[36], to
overcome the impact of data poisoning.

For attacks exploiting dormant neurons in the
network, pruning can be employed to remove
the (dormant) neurons that are not significant to
the network inputs, thereby reducing the chances
for a successful backdoor attack. Yet, pruning-aware
attacks [33] can be used to train only the significant
network neurons with backdoor behavior, which
eliminates the effectiveness of the pruning defense.
Another defense is to fine-tune the DNN with clean
inputs [33]. Although this does not eliminate the
backdoors from the network, it significantly reduces
the chances of a successful backdoor attack.

To formulate better defenses against adversarial
attacks, a current research focus is to determine
robustness bounds for DNNs using formal methods
[82]–[84]. Although this area of study is relatively
new and generally not scalable to practical DNNs, it
has the potential to determine the actual boundaries
where the DNNs will no longer be vulnerable to the
adversarial attacks. However, the question of how
the knowledge of these bounds can be used to actu-
ally prevent adversarial attacks is yet to be answered.

Defending against neural-level Trojans
Similar to adversarial attacks, the trigger for incor-

rect DNN behavior in neural-level Trojans is a mali-
cious input. Hence, techniques that manipulate or
detect input discrepancies can reduce the effect of
neural-level Trojans. Such approaches include input
preprocessing [31] to smooth out the input trigger,
input anomaly detection [85] to identify suspicious
input patterns, and prediction distribution [58] to
identify the bias of DNN toward the targeted output.
Since Trojans are inserted into pretrained DNN mod-
els, their effect could also be negated using local
training [33], i.e., training the DNN model locally
instead of outsourcing the training process to third-
party cloud servers.

Defending against hardware attacks
Hardware Trojans [61], [86]–[89] are a hard-

ware-related security problem in ML systems. A
hardware Trojan is a malicious modification of a

circuit design that results in an undesired behavior,
e.g., leakage of sensitive information, malfunction,
or performance degradation. Since these attacks
make use of hardware modifications, a suitable
defense strategy against them is to use formal meth-
ods [27], particularly via equivalence checking.
Figure 15 demonstrates the use of binary decision
diagrams (BDDs) for equivalence checking [90] of
simple gate-level circuits. The biggest obstacle to
implement the equivalence checking defense is the
absence of a golden/reference model of the actual
system hardware to compare with the intended sys-
tem model [61], [62].

Other potential defenses against hardware Tro-
jans include side-channel analysis [39] for anomaly
detection, and crosslayer attack modeling via bridg-
ing the gap between the hardware and software [38].

Figure 13. Using gradient masking to hide the
input gradients that might be used by the attacker
to determine the perturbations that need to be
inserted to perform the adversarial attack.

Figure 14. (a) Improving a DNN’s accuracy in
the presence of a known attack by training the
data set with adversarial examples obtained
from known adversarial attacks, i.e., adversarial
training. (b) Reducing the effects of adversarial
noise added to the input via input-preprocessing
techniques such as noise filtering, quantization,
and other input transformations. (a) Adversarial
training. (b) Preprocessing-based defense.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

40 IEEE Design&Test

Survey

This defense often assumes that the leaking informa-
tion, e.g., power trace, of the Trojan is large enough
to be detectable. The defense becomes ineffective
when the assumption does not hold [66].

As mentioned in the previous section, side-
channel attacks make use of side-channel leakage
from the system, often giving rise to other security
vulnerabilities in ML systems, such as hardware intru-
sion [45] and IP stealing [39]. Side-channel attacks
often rely on the exactness of the leaking informa-
tion; hence, the defense against them relies on the
addition of random noise to system operations. For
instance, a random selection of the next operation,
whenever the sequence of operations does not mat-
ter, like selecting the sequence in which the image
pixels are fed to the adder in an NN, could poten-
tially make the inference of useful knowledge from
side channels more difficult [40], [41], [91].

Defending against IP stealing
The most common IP stealing attacks involve

stealing private or secret information (privacy
infringement) and the robbery of the IP (piracy).

To protect privacy of data, the simplest defenses
include blurring, obfuscation, and even the addition
of adversarial noise to the data [92], [93]. In prac-
tice, these approaches may not work well as they
may not be strong enough [94]. Relatively stronger
defenses include the use of encryption [34], [35],
i.e., data confidentiality, while outsourcing the data
for training. Similarly, measures to ensure IP privacy
during third-party DNN training include the use of
multiple training servers for joint data set [95], ver-
ifying the training procedure [96], ensuring privacy
after training by network transformation [97], obfus-
cating defenses against reverse engineering-based
attacks [98], [99], and isolating the hardware accel-
erators [100].

To protect IP against piracy, the rounding approach
[101] can be a potential defense. The leaking side
channels could be a potential vulnerability exploited
to deploy an IP stealing attack. Hence, the same side
channels could be used for runtime monitoring to
secure the ML system against IP stealing [39].

Reliability threats for ML systems
Security threats are not the only cause for an ML

system not to work as expected. This section dis-
cusses several environmental/natural factors that
lead to reduced ML system reliability.

Hardware faults
Errors in the hardware components that build

up a system are generally classified into transient,
intermittent, and permanent faults [102], [103]. As
the name implies, transient faults induce temporary
errors in the system. Intermittent faults, on the other
hand, may cause recurring system glitches. Like tran-
sient faults, intermittent faults can be removed from
the system, often by the use of additional circuitry.
Permanent faults have a lasting impact on the system
and can be removed mainly by replacing the faulty
hardware component.

Transient faults
The nature of applications where the ML systems

are deployed exposes these edge devices to harsh
operating conditions like high temperature and alti-
tude. These conditions, in addition to the increasing
circuit clock frequencies, voltage reduction, and
technology scaling, have been continuously increas-
ing the occurrence of transient faults in systems over
past decades [104]. Transient faults can be random,
i.e., occurring unpredictably, or nonrandom, i.e.,
can be reproduced under certain circumstances
[102]. Electrostatic discharge (ESD), electromag-
netic radiation, noise in hardware interconnections,
or flaw(s) in fabrication are among the leading fac-
tors contributing to transient faults [103], [105].

Soft errors [104] are a type of transient fault, mostly
caused either by: 1) a high-speed particle (neutron or
proton) strike from cosmic rays or 2) the emission
of an alpha particle from impurities in IC packaging.
Both particles generate a charge Qrad in the transis-
tor(s) (across the chip), and if this charge exceeds a
certain threshold value Qth, it is likely to change the
state of the transistor, resulting in a bit-flip. This effect,
known as the single-event upset (SEU), is becoming a

Figure 15. Using BDDs for hardware equivalence
checking.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

41March/April 2020

leading cause of concern with system hardware, par-
ticularly memory chips [106], [107]. With increasing
technology miniaturization, such bit-flips can extend
to multiple bits within a single data word [107],
[108], i.e., a multiple-bit upset (MBU). This phenom-
enon of random bit-flips poses a challenge to robust
ML. These effects may lead to misclassification in ML
systems, as shown in Figure 16a.

Intermittent faults
Such faults are intermittent and relatively unpre-

dictable, which make them difficult to repeat, ana-
lyze, and understand. Process variation [29], [109]
is the phenomenon that results in small differences
in the physical characteristics of seemingly identical
circuit components during fabrication. This may
lead to intermittent faults, potentially leading to per-
manent damage to the system chip [102]. Similarly,
aging [110] (Figure 16b) can cause deterioration
of system performance and functions over time.
Another important factor contributing to intermittent
faults in hardware is temperature under which the
edge device is operating. Temperature effects [111]
reduce system reliability by increasing device aging
and error rates.

Often as the result of component aging, timing
errors occur, where the system is unable to provide
correct output within the expected time. Usually,
as the error propagates through the chain of com-
ponents, the magnitude of error increases. Not only
does this reduce ML classification accuracy, but it
may also make the ML model vulnerable to serious
security concerns [112].

Accessing memory with a specific access pat-
tern can introduce access pattern-dependent faults,
which could be caused by disturbance errors.
These faults create a security vulnerability known
as Rowhammer [113], [114], which is the phenom-
enon where repeatedly accessing a row in a mod-
ern dynamic random access memory (DRAM) chip
causes disturbance errors in physically adjacent
rows. DRAM data retention failures [115]–[118] can
also cause intermittent and unpredictable faults
due to DRAM variable retention time and data
pattern dependence.

Permanent faults
These faults are irreparable, where the system

portrays fixed/repetitive errors like stuck-at faults.

Factors contributing to permanent faults include

cosmic radiation, ESD in device, fabrication flaws

[102], [105], [119], or recurring intermittent faults.

Neural network anomalies
Environmental noise (EN) [120], [121] has the

same impact on edge devices as adversarial attacks

have on DNNs

	​ f (x )   ≠  f (x + EN)​.� (2)

For instance, for an object classification system,

possible EN could be due to fog or pollution in the

atmosphere, which can produce effects of blurring

on the input. Similarly, variations in data acqui-

sition by the edge sensors can also lead to faulty

inference in an ML system. For an image-acquisition

system deployed in an autonomous vehicle, change

in either brightness, contrast, camera angle, or any

other photometric transform [74], [122] can impact

the decision-making of the vehicle and may lead to

serious consequences [123].

The reason for such DNN anomalies is a lack of

generalization of DNN for unseen inputs. The classi-

fication boundaries of the DNN outputs may overlap

in the hyper-space, as depicted for a 2-D space in

Figure 17 (top). The inputs closer to these bounda-

ries are vulnerable, and slight changes in input, even

in the absence of a malicious attacker, may lead

to misclassification.

Mitigation techniques for reliability
threats in ML systems

This section discusses several mitigation

techniques for the reliability threats in ML sys-

tems discussed in the “Reliability threats for ML

systems” section.

Figure 16. Effects of reliability threats, i.e.,
(a) aging and (b) soft errors on ML systems.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

42 IEEE Design&Test

Survey

Mitigation techniques for hardware faults
The most notable approaches to ensure system

reliability in the presence of various hardware faults
are as follows.

Protection against transient faults
Generally, transient faults can be removed by a

component reset or system reboot. However, these
are often not the most desirable solutions. Inter-
leaving to prevent errors in consecutive bits [124],
using additional circuitry for error detection [125],
scrubbing to periodically remove errors to prevent
error accumulation [117], [126], adding hardware
redundancy and voting mechanisms [127] to rule
out the erroneous bits, and using error detection and
correction codes [112], [128]–[130] are generally
the preferred choices to defend against soft errors
in memories and logic. Recently, replicating the
complete hardware accelerator and conjoining the
accelerators with majority voting are also being used
to ensure safety in ML systems. For instance, Tesla’s
self-driving car computer has two chips deployed to
tolerate faults [131].

Numerous approaches are available to handle
transient errors; yet, all these approaches provide
a tradeoff between error detection and correction
capability, area, power consumption, and latency.
Redundancy-based approaches can incur large area
overhead and cost. A recent work shows that, in a
DNN-based system, the bit-flips from 1 to 0 have a more
drastic effect on the system’s classification accuracy
than bit-flips from 0 to 1 [132]. This finding could be
used for system design with stronger error-correction
mechanisms deployed for more critical bit-flips.

Protection against intermittent faults
As system components age at different rates,

components in the same chip may require differ-
ent levels of protection. Protection techniques that
are consistent throughout the system, like chiplevel
guardbanding, may thus not be sufficient. A recent
work [133] studies dynamic protection approaches
that ensure that the most vulnerable components
receive the highest protection in the system. The
same work also proposes age-aware workload
management to age all components of the system
at the same rate. Disturbance errors like Rowham-
mer can be mitigated via probabilistic mechanisms
[113] and various other hardware or software tech-
niques [114]. Online profiling of memory cells
[115]–[117], [134]–[136] can also help the system
to discover and disable weak cells with intermittent
or aging-related errors.

To detect timing errors, several studies propose to
use Razor flip-flops [137]–[139]. Once a timing error
is detected, error correction is usually employed by
either introducing slack in computation, skipping a
clock cycle, or scaling voltage to mitigate the error’s
effect. However, these approaches may introduce a
delay in execution as the correct result propagates to
the output. Another mitigation approach to defend
against timing errors is formal timing analysis [140],
[141]. Such timing-verification approaches are
intended to ensure that the system behaves correctly
within the defined timing bounds.

Protection against permanent faults
Hard errors imply irreversible chip damage, for

which the most effective solution is usually to replace
the faulty chip/component. However, this is a costly
solution. A relatively cost-effective alternative to chip
replacement is discarding only the erroneous bits/byte
of the component [142], [143], which minimizes the

Figure 17. Inputs close to cluster boundaries
(top) in hyperspace are most vulnerable to
environmental adversarial transformations.
Variation during data acquisition (middle) can
cause misclassification, which can lead to drastic
effects in ML systems (bottom) [77].

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

43March/April 2020

cost incurred. Specific to ML systems, techniques like
fault-aware training, pruning, mapping, and activation
clipping are often used to address permanent faults
[106], [144], [145], [179], [180]. In fault-aware train-
ing, the DNN is trained for different faults at multiple
levels, like at the transistor and logic levels, as shown
in Figure 18a. This is a computationally costly solution.
In fault-aware pruning, all the DNN connections and
parameters that map to faulty processing elements
or nodes are pruned using fault maps of the baseline
hardware (e.g., systolic array-based accelerator), as
shown in Figure 18b. In fault-aware mapping [179], the
saliency of DNN parameters is exploited to define a
mapping of different segments of the DNN while retain-
ing the salient parameters. In fault-aware activation
clipping [180], the activation values exceeding a pre-
defined threshold for fault-free NNs are clipped. This
eliminates the need for either pruning or retraining.

Mitigation techniques against environmental
noise

Similar to defenses against adversarial attacks
(the “Defending against adversarial attacks” section),
preprocessing filters [31] can reduce the effects of
EN in DNNs. Likewise, adversarial training [75] of
the DNN with noisy inputs could improve DNN accu-
racy for certain noise patterns. However, similar to
the effect of using adversarial training for adversar-
ial attacks, this solution may not work well because
adversarial training overfits the network to adversarial
examples but does not ensure better generalization
[56]. Since the accuracy of ML systems in the pres-
ence of EN and varying input data arises due to the
lack of generalization to unseen inputs in the DNN,
an alternative solution could be to train the DNN
on a larger input data set. However, it is not always
possible to obtain a large and diverse input data set.
To overcome this limitation, some works propose
the generation of synthetic data sets [146]–[149].
Yet, real input domains are mostly very large, multi-
dimensional, and of continuous spaces. Hence, it is
uncertain if any finite number of synthetic input points
could be sufficiently representative of the entire input
domain, allowing the trained DNN to generalize for
unseen inputs.

Formal verification for robust ML
As briefly highlighted in the “Machine learning:

Concepts and terminology” section, testing a trained
DNN using a labeled data set is insufficient to ensure

reliable DNN inference. This is due to the lack of
generalization of DNNs for unseen inputs. Recently,
efforts have been made to understand and interpret
the decision-making process inside the DNNs, hop-
ing to provide dependable guarantees regarding
DNN inference. These include exploring input fea-
ture space [150], using saliency maps to understand
DNN inference [151], and developing various certi-
fiability criteria for DNN interpretability [152]–[154].

Formal verification provides an orthogonal alter-
native to testing that provides formal or mathemat-
ical guarantees regarding NN performance at the
edge. The use of formal verification for hardware
and software has existed for a long time [27], [28].
Yet, research on verification of NNs, which forms an
essential component of the ML system, has been an
active domain of research for only a decade. Figure 19
summarizes the major milestones reached in NN ver-
ification over time, according to the four major verifi-
cation categories: satisfiability (SAT) and satisfiability
modulo theories (SMT) solving, linear programming
(LP), theorem proving, and incomplete verification.

SAT/SMT
SAT checking is the branch of formal verification

where the system model and the property to be ver-
ified for the system are expressed in a propositional
logic, and written into conjunctive normal form
(CNF), as shown in Figure 20 (bottom). The formula
is then checked by an automatic SAT solver. Having
an SAT output implies that a satisfying solution to the
negation of the property, i.e., a counterexample, has
been found. An UNSAT output implies the absence
of any counterexample, and hence indicates that the
stated property holds for the system. SMT is a variant
of SAT that works similar to SAT solving, as shown

Figure 18. Mitigation techniques for permanent
faults in ML systems. (a) Fault-aware training.
(b) Fault-aware pruning.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

44 IEEE Design&Test

Survey

in Figure 20 (top), but allows the use of theories
beyond a propositional logic, like linear arithmetic.

Since SAT solving allows the use of only proposi-
tional variables (i.e., atoms), it is often the verification
approach of choice for binarized NNs (BNNs) [82],
[155]. SMT solvers, on the other hand, are preferred for
verifying DNNs with real and/or integer network param-
eters [156], [157]. Another concept often associated
with SAT-based verification approaches is counterex-
ample-guided abstraction refinement (CEGAR) [158],
which produces more reliable verification results by

iteratively improving the network model using counter-
examples. CEGAR and its variants provide an efficient
verification solution when the DNN is modeled using
overapproximation [159].

However, SAT-based verification suffers from the
scalability problem: state-of-the-art techniques are capa-
ble of verifying only small networks [160], [161], com-
prising less than ten neurons, to medium-sized networks
[157], comprising of up to 20,000 neurons. Although
some works propose optimizations, like K-factoring
[155], to reduce the size of this problem, applying these
optimizations can be computationally costly. More rig-
orous and cost-effective optimizations can improve the
scalability problem with SAT-based DNN verification.

Another challenge is to design more efficient
SAT/SMT solvers. There has been a tremendous
improvement in the state-of-the-art SAT solvers in
recent years, with increased computational speed
and capability to deal with larger networks. Yet,
there is a lack of dedicated tools for DNN verifica-
tion; existing tools [156] are not scalable to larger
networks. More powerful SAT/SMT solvers could be
key for the improvement of DNN verification.

Linear programming
LP-based verification works by defining the sys-

tem as a set of linear constraints, and the property

Figure 19. A decade of verification techniques for NNs.

Figure 20. Using an SMT solver for verification. CNF
expresses program and property constraints of the
C code (top), and SAT/SMT solver for a DNN-based
system (bottom).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

45March/April 2020

to be verified as an objective function, as shown in
Figure 21. The objective function can be either a min-
imization or a maximization function. The search of
the minima or maxima is automatic and involves the
use of linear programmers [162], [163].

For DNN verification, LP is generally used to
check the robustness of the network against adver-
sarial attacks. The objective is to determine the
smallest noise (or noise margin) that satisfies linear
constraints of the network but causes misclassifica-
tion at network output [81], [84].

As the name suggests, an inherent limitation of LP
is that it requires the constraints to be linear. For DNNs,
this poses a problem due to the presence of nonlinear
activation functions. Some works [164], [165], as will
be discussed in the “Incomplete verification” section,
replace nonlinear activation functions by their linear
approximations. This yields incomplete verification
results since a linear representation is insufficient to
fully replicate the behavior of the actual nonlinear
activation function. Another approach, proposed for
rectified linear unit (ReLU)-based networks, is input
bisection for selected network nodes [166]. ReLU
is a piecewise linear function that works like a half-
way rectifier: output is zero if the input is negative,
but the output equals the input for all nonnegative
input values. A calculated input bisection splits ReLU
into two linear functions, at the cost of a larger size-
verification problem.

The use of Big-M encoding1 is proposed in several
recent works [57], [83], [168]–[170]. Although the
approach ensures reliable verification results, with-
out a significant increase in the size of the problem,
it also suffers from the scalability problem. Reduc-
ing the number of constraints by eliminating the
inactive neurons [84], and exploiting the sparsity of
practical DNNs may allow the effective verification
of practical-sized ML systems.

Interactive theorem proving
Theorem proving is a type of formal verification in

which the system and its properties are defined mathe-
matically, and the properties are verified for the system
by rules of natural deduction [171]. The verification
example demonstrated in Figure 5 shows how natu-
ral deduction-based reasoning works. Figure 22 gives

1The Big-M technique is used for the verification of ReLU-based networks, where a
binary indicator variable Y is added to the linear constraints to indicate the linear
region of the activation function to which the constraint belongs, while M provides
a valid output upper bound that is greater than the maximum output value of every
ReLU node in the network. We refer the reader to [167] for details of the technique.

a more generic view of how theorem proving works.
Generally, for the propositional logic and simple cir-
cuits, state-of-the-art theorem provers are able to ver-
ify the system without human intervention, i.e., these
systems can be verified by automatic theorem provers.
However, for complex systems, like DNNs, human
guidance is essential, and hence the verification of
such systems is done via interactive theorem proving.

For verification, the system is represented as a
logical model governed by mathematical princi-
ples. The property is similarly expressed as a formal
proof goal. The objective is to use axioms and rules
derived from these axioms to check if the proper-
ties, i.e., system specifications, hold for the system
model, i.e., the implementation.

As expected from a human-guided verification
approach, interactive theorem proving is difficult
to execute for two reasons. First, it requires an
in-depth knowledge of the underlying system for
realistic system modeling. Second, it demands the

Figure 21. Using a linear programmer to define the
linear constraints and the objective function (top),
and verification of a DNN-based system with a
linear programmer solver (bottom).

Figure 22. Using a theorem prover for the
verification of a half-adder (top), and mathematical
model and theorems of theorem proving for a DNN-
based system (bottom).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

46 IEEE Design&Test

Survey

verifier to have an expert understanding of: 1) why
a certain property holds for the system; 2) what are
the required assumptions; and 3) how to prove the
property on the basis of sound mathematical prin-
ciples. Hence, it is no wonder that interactive theo-
rem proving has been a scarcely explored research
domain for DNN verification. Murphy et al. [172]
verify the perceptron convergence theorem, but
they focus on a very small subset of DNNs called
binary classifiers that may not be easy to adopt for
large state-of-the-art DNNs.

For more practical theorem-proving-based DNN
verification approaches, the basic need is to under-
stand how DNNs work, why they make certain
decisions, and what are the mathematical reasons
behind their behavior. The perceptron convergence
theorem [2], [173] was proposed almost six decades
before it was formally verified by Murphy et al. [172].
Hence, understanding and developing the theory
behind DNN operation seem to be a logical step
before theorem proving could be successfully used
for DNN verification.

Incomplete verification
Completeness is a notion that decides whether a

system model is sufficient to prove everything about
the system. Incomplete verification often makes use
of abstract interpretation, linear approximation, and
other similar approaches to formally model the sys-
tem [174]–[176]. As a result, the system model is
not an exact representation of the actual system but
rather an overapproximation. Verification is then
performed on this approximate model, as shown
in Figure 23. It is important to note that simulation/
testing, which also provides incomplete results, must
not be confused with incomplete verification. This is
because, in testing, the system is considered a black

box, and the tester analyzes the system behavior by
feeding the black box with a finite set of inputs and
recording the output. In contrast, in incomplete ver-
ification, the system is a white box representing the
simplified version of the actual system, on which for-
mal verification is performed.

Since incomplete verification involves verifying
a simplified version of the actual system model,
this makes the approach scalable, even to larger
DNNs [164], [165]. To improve the completeness
of verification, we can use abstraction refinement
approaches like CEGAR [158], [159]. This does not
entirely eliminate the problem of incompleteness of
verification, but improves the reliability of verifica-
tion results.

Incomplete verification often leads to false posi-
tives [164], [165]. Whenever the incomplete verifier
provides counterexamples, they are actual scenarios
where the property does not hold for the system. If
the verifier provides no counterexamples, the system
may still be unsafe or the property being verified may
still not hold for some inputs to the system [177].

Incomplete verification is scalable and, hence, is
an attractive verification alternative for DNNs. Yet,
its inherent incompleteness provides the biggest
limitation to its accuracy. A possible solution is to
trade off some scalability of incomplete verification
with completeness [178]. This can be accomplished
by iteratively refining the network model until it
matches the exact system model [158], or combin-
ing incomplete verification with other complete veri-
fication approaches like SMT solvers or LP.

Open challenges and discussion
Although ML is a rapidly evolving domain, it

will probably pass a long time until ML systems are
considered robust. In ML systems, similar to other
systems, a single vulnerability is sufficient to pose
a security or reliability issues that might prevent the
system from obtaining accurate results. However, it
is very challenging to provide strong robustness guar-
antees, because we need to deal with a wide range of
security and reliability threats, while considering the
probabilistic/stochastic nature of the ML algorithms.
This section discusses some important (in our view)
open challenges for achieving robust ML systems.

ML systems have numerous security issues mainly
related to: 1) outsourced training; 2) untrusted
fabrication foundries; and 3) attacker access to
the environment in which the system is deployed.

Figure 23: Using incomplete verification for:
1) verifying a continuous domain program (top)
and 2) verifying a DNN-based system (bottom).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

47March/April 2020

Among these security issues, some of the most
important are the following.

•	 Securing training data sets before outsourcing
them for training. This may involve encrypting
the training data set from the cloud servers to
ensure IP privacy or minimizing the impact of
data poisoning attacks.

•	 Obfuscating ML hyper-parameters, algorithms,
and IPs. There are several defenses to success-
fully obfuscate ML hyper-parameters, algorithms,
and IPs using blurring and noise addition. How-
ever, as indicated earlier, these techniques do not
often work well in practice. Hence, a prospective
obfuscation method could be the inclusion of
various obfuscation techniques in a single frame-
work, and random switching between these tech-
niques to ensure a more secure ML system.

•	 Ensuring fairness of training, i.e., preventing the
bias of the trained NN. Gradient-based adversar-
ial input generation and counterexamples gener-
ated via formal verification of NNs can be used
to identify the bias in training. This method is
based on the observation that adversarial inputs
are more likely to identify the output classes to
which the trained NN is biased.

•	 Validating the functional and behavioral cor-
rectness of ML hardware. Formal verification
methods may be required to provide stronger
guarantees on the ML hardware operation by
performing verification under diverse security
and reliability conditions.

•	 Minimizing the accessibility to side-channel leak-
ages. This can be achieved by minimizing the
sharing of resources like memory and power,
thereby ensuring the hardware isolation of the
ML system. However, this may be a costly solution
for most ML applications. Another prospective
solution to ensure minimal access of an attacker
to the side-channel leakages can be the introduc-
tion of complementary synthetic noise to nullify
the side-channel signatures of the system.

The DNN model and the hardware that run the
model are both vulnerable to inconsistencies in per-
formance over their lifetime. Major unresolved relia-
bility challenges in ML systems include:

•	 Developing frameworks to emulate ML systems
under diverse operating conditions. This is
essential to: 1) study and better understand the

reliability challenges of the systems deployed in
the physical environment; 2) assess the perfor-
mance of the available mitigation techniques;
and 3) analyze the tradeoffs between these
approaches to identify the solution that ensures
the highest system reliability.

•	 Providing a fault-safe runtime in the case of sys-
tem discrepancies. Currently, such fault-safe
techniques include the use of redundancies at
the hardware and software levels, which ensure
that, in the case of a component malfunction-
ing, the overall performance of the system is not
affected. However, these measures are generally
very costly and, hence, there still exists the need
for better fault-safe mechanisms for ML systems.

•	 Hampering the progression of subsystem failures
to the interconnected components. This requires
mitigation approaches that can provide cross-
layer reliability to ensure that a failure in one sys-
tem component does not propagate and affect
the results of the next system component(s).

Formal verification is a promising way to pro-
vide strong robustness guarantees in ML systems
via mathematical proofs. The major challenges for
making formal verification a practical tool to ensure
robustness include:

•	 Formally modeling the nonlinear, nonconvex
behavior of ML systems. Complete verification
with existing modeling approaches (e.g., Big-M)
is often not the optimal solution due to the large
number of generated clauses and/or constraints.
Incomplete verification is also not the optimal
solution because it may lead to false-positive
results due to overapproximation.

•	 Incorporating the uncertainties of the real world
into the formal system model. Namely, the veri-
fication of the system under different reliability
factors, e.g., EN.

•	 Inspecting system behavior for all possible inputs.
Formal verification is widely acclaimed due to its
rigorous analysis and complete results. However,
due to the complexity of NN verification, current
approaches rely on applying verification to only
a subset of inputs (i.e., seed inputs).

Providing complete guarantees regarding sys-
tem behavior requires more rigorous verification
approaches. Moreover, end-to-end formal verifica-
tion of the complete system, which is composed of

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

48 IEEE Design&Test

Survey

multiple ML-based subsystems and control subsys-

tems, is a significant research challenge.

•	 Optimizing the verification goal to reduce the

computational complexity of the verification

problem. As the size of the underlying ML system

increases, the size of its formal representation

also increases. This requires large computational

overhead and time to formally verify ML systems.

Hence, simplifying the verification problem prior

to the actual verification can reduce the compu-

tational complexity of the problem.

•	 Improving the timing efficiency of verification,

while ensuring the completeness of verification

results. There is a tradeoff between the timing

cost of verification and the completeness of the

verification results. With the development of

efficient verification tools, the bridge between

timing efficiency and completeness has been

reduced. However, achieving the most optimal

tradeoff between timing efficiency and com-

pleteness still remains an open challenge.

•	 Scaling the verification algorithm to be applicable

to practically sized DNNs. With improvements in

verification tools and formalization approaches,

the size of the DNNs that can be formally verified
is increasing gradually.

Tackling the previous challenges and research
directions is important for providing secure and
reliable ML systems. However, as ML is a domain
that advances very rapidly, there will probably
be new challenges and research directions that
will become important with the emergence of
new ML models, deeper DNNs, unreliable hard-
ware with reduced technology nodes, and new
attack models.

ML, particularly NNs, forms an essential
component of modern CPSs. However, due to out-
sourced training, compromised foundries, stealthy
attackers, system aging, and the harsh operating
environment of these systems, both at the sys-
tem cloud and edge levels, they are vulnerable to
numerous security and reliability concerns. This
survey highlights: 1) the most prominent security
and reliability challenges for ML systems; 2) the mit-
igation approaches to defend the systems against
these challenges; and 3) formal methodologies for
verifying trained NNs. This survey also summarizes
the most important open challenges that hamper
robust ML systems.� 

Appendix

NN Description Pictorial Representation of the Network

Feed-Forward NN

These are the NNs with neurons in every layer
impacting only the decision of neurons in the
successive layers. Hence, the networks are cycle/
loop - free. The feed-forward networks are also
called fully connected when every neuron in the
preceding layer is connected to every neuron in
the successive layer.

RNN

RNNs comprise of feedback loop(s); hence,
neurons in one layer can impact the values
of neurons in successive as well as preceding
layers. This provides temporal characteristics
to the RNNs, i.e., the values of the neurons (or
the internal memory of the network) varies
temporally.

CNN

Unlike the earlier fully connected networks,
CNNs share network weights via convolution
operation. This improves the local spatial cor-
relation of the input, and ensures that only the
most prominent input features of the input are
carried to the successive network layers.

Continued

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

49March/April 2020

NN Description Pictorial Representation of the Network

GAN

GANs involve an interplay between a generator
and a discriminator for the training of the net-
work. The generator produces synthetic inputs
in the same latent space as the training dataset,
while the discriminator learns to distinguish the
original data from the synthetic data. Hence,
the objective of the generator is to maximize
the error (i.e., generate more realistic synthetic
inputs) while the discriminator minimizes the
error by learning to differentiate between real
and synthetic input.

Capsule Network
(CapsNet)

CapsNets are build up of layers that operate on
vectors, where each element of the vector repre-
sents the instantiation parameter that deduces
whether the feature represented in the vector is
actually present in the input. The length of the
vector, on other hand, represents the instan-
tiation probability. The connections between
two consecutive capsule layers are learned
dynamically during inference through the
routing-by-agreement algorithm, which iteratively
updates the coupling coefficients of the CapsNet.
In this way, capsules learn to interpret high level
features in a hierarchical manner.

Spiking NN

All the NNs discussed above assume a nor-
malized firing frequency for the neurons. This
neglects the dynamic behavior of the inputs like
speech. SNNs make use of spike trains to depict
the spatio-temporal characteristics of the input.
Hence, SNNs are an important class of NNs par-
ticularly for timedependent applications.

for face recognition,” in Proc. IEEE Int. Conf. Comput.

Vis. Workshop (ICCVW), Dec. 2015, pp. 142–150.

 	 [8].	 G. Hinton et al., “Deep neural networks for acoustic

modeling in speech recognition,” IEEE Signal Process.

Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

 	 [9].	 T. S. Guzella and W. M. Caminhas, “A review of

machine learning approaches to Spam filtering,” Expert

Syst. Appl., vol. 36, no. 7, pp. 10206–10222, Sep. 2009.

	[10].	Z. Yuan et al., “Droid-Sec: Deep learning in Android

malware detection,” in Proc. SIGCOMM Comput.

Commun. Rev., vol. 44, no. 4. New York, NY, USA:

ACM, 2014, pp. 371–372.

	[11].	 V. C. Gungor et al., “Smart grid technologies:

Communication technologies and standards,” IEEE

Trans. Ind. Informat., vol. 7, no. 4, pp. 529–539, Nov. 2011.

	[12].	M. Bojarski et al., “End to end learning for self-driving

cars,” Apr. 2016, arXiv:1604.07316. [Online]. Available:

https://arxiv.org/abs/1604.07316

	[13].	Y. Lin, P. Wang, and M. Ma, “Intelligent transportation

system (ITS): Concept, challenge and opportunity,”

in Proc. IEEE Int. Conf. Big Data Secur. Cloud

(BigDataSecurity), May 2017, pp. 167–172.

 References
	[1].	 N. Mäkitalo et al., “Safe, secure executions at the network

edge: Coordinating cloud, edge, and fog computing,”

IEEE Softw., vol. 35, no. 1, pp. 30–37, Jan. 2018.

 	 [2].	 F. Rosenblatt, “The perceptron—A perceiving and

recognizing automation,” Cornell Aeronaut. Lab.,

Ithaca, NY, USA, Tech. Rep. 85-460-1, 1957.

 	 [3].	 L. Wang et al., “Places205-VGGNet models for scene

recognition,” Aug. 2015, arXiv:1508.01667. [Online].

Available: https://arxiv.org/abs/1508.01667

 	 [4].	 G. Huang et al., “Densely connected convolutional

networks,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

 	 [5].	 G. Anthes, “Lifelong learning in artificial neural

networks,” Commun. ACM, vol. 62, no. 6, pp. 13–15,

May 2019.

 	 [6].	 M. Fink et al., “Deep learning-based multi-scale multi-

object detection and classification for autonomous

driving,” in Fahrerassistenzsysteme. Wiesbaden,

Germany: Springer, 2019, pp. 233–242.

 	 [7].	 G. Hu et al., “When face recognition meets with deep

learning: An evaluation of convolutional neural networks

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1508.01667

50 IEEE Design&Test

Survey

	[14].	 A. Esteva et al., “A guide to deep learning in healthcare,”

Nature Med., vol. 25, no. 1, pp. 24–29, 2019.

	[15].	F. Amato et al., “Artificial neural networks in medical

diagnosis,” J. Appl. Biomed., vol. 11, no. 2, pp. 47–58,

2013.

	[16].	V. Sze et al., “Efficient processing of deep neural

networks: A tutorial and survey,” Proc. IEEE, vol. 105,

no. 12, pp. 2295–2329, Dec. 2017.

	[17].	Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, p. 436, 2015.

	[18].	M. I. Jordan, “Serial order: A parallel distributed

approach,” Institute for Cognitive Science Report,

United States, Tech. Rep. 8604, Jun. 1986.

	[19].	S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Comput., vol. 9, no. 8,

pp. 1735–1780, 1997.

	[20].	W. S. Mcculloch and W. Pitts, “A logical calculus of

the ideas immanent in nervous activity,” Bull. Math.

Biophys., vol. 52, nos. 1–2, pp. 99–115, Jan. 1990.

	[21].	D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

Learning Internal Representations by Error

Propagation. Cambridge, MA, USA: MIT Press, 1986,

vol. 1, ch. 8, pp. 318–362.

	[22].	Y. LeCun et al., “Handwritten digit recognition with a

backpropagation network,” in Proc. Adv. Neural Inf.

Process. Syst., 1990, pp. 396–404.

	[23].	 G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Trans

forming autoencoders,” in Proc. Int. Conf. Artif. Neural

Netw. Berlin, Heidelberg: Springer, 2011, pp. 44–51.

	[24].	 I. Goodfellow et al., “Generative adversarial nets,” in Proc.

Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

	[25].	J. Vreeken, “Spiking neural networks, an introduction,”

Utrecht University: Information and Computing

Sciences, 2003.

	[26].	C. Szegedy et al., “Intriguing properties of neural

networks,” Dec. 2013, arXiv:1312.6199. [Online].

Available: https://arxiv.org/abs/1312.6199

	[27].	A. Camilleri, M. Gordon, and T. Melham, “Hardware

verification using higher-order logic,” Univ. Cambridge,

Comput. Lab., Cambridge, U.K., Tech. Rep. UCAM-

CL-TR-91, 1986.

	[28].	V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey

of automated techniques for formal software verification,”

IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 27, no. 7, pp. 1165–1178, Jul. 2008.

	[29].	F. Kriebel et al., “Robustness for smart cyber physical

systems and Internet-of-Things: From adaptive

robustness methods to reliability and security for

machine learning,” in Proc. IEEE Comput. Soc. Annu.

Symp. VLSI (ISVLSI), Jul. 2018, pp. 581–586.

	[30].	A. Kurakin et al., “Ensemble adversarial training:

Attacks and defenses,” in Proc. Int. Conf. Learn.

Represent. (ICLR), 2018, pp. 1–20.

	[31].	F. Khalid et al., “FAdeML: Understanding the impact of

pre-processing noise filtering on adversarial machine

learning,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit. (DATE), Mar. 2019, pp. 902–907.

	[32].	T. Gu et al., “BadNets: Evaluating backdooring attacks

on deep neural networks,” IEEE Access, vol. 7,

pp. 47230–47244, 2019.

	[33].	K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defend-

ing against backdooring attacks on deep neural networks,”

in Proc. Int. Symp. Res. Attacks, Intrusions, Defenses.

Cham, Switzerland: Springer, 2018, pp. 273–294.

	[34].	E. Hesamifard et al., “Privacy-preserving machine

learning as a service,” in Proc. Privacy Enhancing

Technol., vol. 2018, no. 3, pp. 123–142, 2018.

	[35].	E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL:

Deep neural networks over encrypted data,”

Nov. 2017, arXiv:1711.05189. [Online]. Available:

https://arxiv.org/abs/1711.05189

	[36].	R. Gilad-Bachrach et al., “Cryptonets: Applying neural

networks to encrypted data with high throughput and

accuracy,” in Proc. Int. Conf. Mach. Learn., 2016,

pp. 201–210.

	[37].	T. Graepel, K. Lauter, and M. Naehrig, “Ml confidential:

Machine learning on encrypted data,” in Proc. Int.

Conf. Inf. Secur. Cryptol. Berlin, Heidelberg: Springer,

2012, pp. 1–21.

	[38].	S. Rehman, M. Shafique, and J. Henkel, Reliable

Software for Unreliable Hardware: A Cross Layer

Perspective. Cham, Switzerland: Springer, 2016.

	[39].	F. Khalid et al., “Security for machine learning-based

systems: Attacks and challenges during training and

inference,” in Proc. Int. Conf. Frontiers Inf. Technol.

(FIT), Dec. 2018, pp. 327–332.

	[40].	L. Wei et al., “I know what you see: Power side-

channel attack on convolutional neural network

accelerators,” in Proc. Comput. Secur. Appl. Conf.

New York, NY, USA: ACM, 2018, pp. 393–406.

	[41].	V. Duddu et al., “Stealing neural networks via timing

side channels,” Dec. 2018, arXiv:1812.11720. [Online].

Available: https://arxiv.org/abs/1812.11720

	[42].	I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining

and harnessing adversarial examples,” in Proc. Int.

Conf. Learn. Represent. (ICLR), 2015, pp. 1–11.

	[43].	 F. Michels et al., “On the vulnerability of capsule networks

to adversarial attacks,” Jun. 2019, arXiv:1906.03612.

[Online]. Available: https://arxiv.org/abs/1906.03612

	[44].	A. Marchisio et al., “Capsattacks: Robust and

imperceptible adversarial attacks on capsule

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1711.05189
https://arxiv.org/abs/1812.11720
https://arxiv.org/abs/1906.03612

51March/April 2020

networks,” Jan. 2019, arXiv:1901.09878. [Online].

Available: https://arxiv.org/abs/1901.09878

	[45].	A. Salem et al., “Ml-leaks: Model and data

independent membership inference attacks and

defenses on machine learning models,” Jun. 2018,

arXiv:1806.01246. [Online]. Available: https://arxiv.org/

abs/1806.01246

	[46].	F. Khalid et al., “TrISec: Training data-unaware

imperceptible security attacks on deep neural

networks,” in Proc. IEEE 25th Int. Symp. On-Line Test.

Robust Syst. Design (IOLTS), Jul. 2019, pp. 188–193.

	[47].	B. Biggio and F. Roli, “Wild patterns: Ten years after

the rise of adversarial machine learning,” Pattern

Recognit., vol. 84, pp. 317–331, Dec. 2018.

	[48].	 W. Brendel, J. Rauber, and M. Bethge, “Decision-based

adversarial attacks: Reliable attacks against black-box

machine learning models,” Dec. 2017, arXiv:1712.04248.

[Online]. Available: https://arxiv.org/abs/1712.04248

	[49].	J. Chen, M. I. Jordan, and M. J. Wainwright,

“HopSkipJumpAttack: A query-efficient decision-

based attack,” Apr. 2019, arXiv:1904.02144. [Online].

Available: https://arxiv.org/abs/1904.02144

	[50].	M. Cheng et al., “Query-efficient hard-label black-

box attack: An optimization-based approach,” arXiv

preprint arXiv:1807.04457, 2018.

	[51].	L. Pengcheng, J. Yi, and L. Zhang, “Query-efficient

black-box attack by active learning,” in Proc. IEEE Int.

Conf. Data Mining (ICDM), Nov. 2018, pp. 1200–1205.

	[52].	Y. Dong et al., “Efficient decision-based black-box

adversarial attacks on face recognition,” in Proc. IEEE/

CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2019, pp. 7714–7722.

	[53].	F. Khalid et al., “RED-Attack: Resource efficient

decision based attack for machine learning,”

Jan. 2019, arXiv:1901.10258. [Online]. Available:

https://arxiv.org/abs/1901.10258

	[54].	R. Wiyatno and A. Xu, “Maximal Jacobian-based

Saliency map attack,” Aug. 2018, arXiv:1808.07945.

[Online]. Available: https://arxiv.org/abs/1808.07945

	[55].	A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial

machine learning at scale,” in Proc. Int. Conf. Learn.

Represent. (ICLR), 2017, pp. 1–17.

	[56].	N. Carlini and D. Wagner, “Towards evaluating the

robustness of neural networks,” in Proc. IEEE Symp.

Secur. Privacy (SP), May 2017, pp. 39–57.

	[57].	J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified

defenses for data poisoning attacks,” in Proc. Adv.

Neural Inf. Process. Syst., 2017, pp. 3517–3529.

	[58].	Y. Liu, Y. Xie, and A. Srivastava, “Neural Trojans,”

in Proc. IEEE Int. Conf. Comput. Design (ICCD),

Nov. 2017, pp. 45–48.

	[59].	S. Thys, W. V. Ranst, and T. Goedemé, “Fooling

automated surveillance cameras: Adversarial

patches to attack person detection,” CoRR,

vol. abs/1904.08653, Apr. 2019. [Online]. Available:

https://arxiv.org/abs/1904.08653

	[60].	M. Zou et al., “Potrojan: Powerful neural-level

Trojan designs in deep learning models,” Feb. 2018,

arXiv:1802.03043. [Online]. Available: https://arxiv.org/

abs/1802.03043

	[61].	S. Bhunia et al., “Hardware Trojan attacks: Threat

analysis and countermeasures,” Proc. IEEE, vol. 102,

no. 8, pp. 1229–1247, Aug. 2014.

	[62].	J. Clements and Y. Lao, “Hardware Trojan attacks

on neural networks,” Jun. 2018, arXiv:1806.05768.

[Online]. Available: https://arxiv.org/abs/1806.05768

	[63].	R. Karri, J. Rajendran, and K. Rosenfeld, “Trojan

taxonomy,” in Introduction to Hardware Security

and Trust. New York, NY, USA: Springer, 2012,

pp. 325–338.

	[64].	J. Clements and Y. Lao, “Hardware Trojan design on

neural networks,” in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS), May 2019, pp. 1–5.

	[65].	Y. Zhao et al., “Memory Trojan attack on neural

network accelerators,” in Proc. Design, Autom.

Test Europe Conf. Exhibit. (DATE), Mar. 2019,

pp. 1415–1420.

	[66].	 I. H. Abbassi et al., “TrojanZero: Switching activity-aware

design of undetectable hardware Trojans with zero

power and area footprint,” in Proc. Design, Autom. Test

Eur. Conf. Exhibit. (DATE), Mar. 2019, pp. 914–919.

	[67].	L. Batina et al., “CSI neural network: Using side-

channels to recover your artificial neural network

information,” Oct. 2018, arXiv:1810.09076. [Online].

Available: https://arxiv.org/abs/1810.09076

	[68].	K. Yoshida et al., “Model-extraction attack against

FPGA-DNN accelerator utilizing correlation

electromagnetic analysis,” in Proc. IEEE 27th Annu.

Int. Symp. Field-Program. Custom Comput. Mach.

(FCCM), Apr. 2019, p. 318.

	[69].	S. Pal et al., “A framework for the extraction of deep

neural networks by leveraging public data,” May 2019,

arXiv:1905.09165. [Online]. Available: https://arxiv.org/

abs/1905.09165

	[70].	L. Batina et al., “CSI NN: Reverse engineering of

neural network architectures through electromagnetic

side channel,” in Proc. 28th USENIX Secur. Symp.

(USENIX Secur.), 2019, pp. 515–532.

	[71].	W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering

convolutional neural networks through side-channel

information leaks,” in Proc. 55th ACM/ESDA/IEEE

Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1901.09878
https://arxiv.org/abs/1806.01246
https://arxiv.org/abs/1806.01246
https://arxiv.org/abs/1712.04248
https://arxiv.org/abs/1904.02144
https://arxiv.org/abs/1901.10258
https://arxiv.org/abs/1808.07945
https://arxiv.org/abs/1904.08653
https://arxiv.org/abs/1802.03043
https://arxiv.org/abs/1802.03043
https://arxiv.org/abs/1806.05768
https://arxiv.org/abs/1810.09076
https://arxiv.org/abs/1905.09165
https://arxiv.org/abs/1905.09165

52 IEEE Design&Test

Survey

	[72].	F. Tramèr et al., “Stealing machine learning models via

prediction APIs,” in Proc. 25th USENIX Secur. Symp.

(USENIX Secur.), Aug. 2016, pp. 601–618.

	[73].	M. Fredrikson, S. Jha, and T. Ristenpart, “Model

inversion attacks that exploit confidence information

and basic countermeasures,” in Proc. 22nd ACM

SIGSAC Conf. Comput. Commun. Secur. (CCS).

New York, NY, USA: ACM, 2015, pp. 1322–1333.

	[74].	K. Pei et al., “DeepXplore: Automated whitebox

testing of deep learning systems,” in Proc. 26th Symp.

Operating Syst. Princ. (SOSP). New York, NY, USA:

ACM, 2017, pp. 1–18.

	[75].	K. Pei et al., “Towards practical verification of machine

learning: The case of computer vision systems,”

Dec. 2017, arXiv:1712.01785. [Online]. Available:

https://arxiv.org/abs/1712.01785

	[76].	H. Hosseini, S. Kannan, and R. Poovendran,

“Dropping pixels for adversarial robustness,” CoRR,

vol. abs/1905.00180, May 2019. [Online]. Available:

http://arxiv.org/abs/1905.00180

	[77].	T.-W. Weng et al., “On extensions of clever: A neural

network robustness evaluation algorithm,” in Proc.

IEEE Global Conf. Signal Inf. Process. (GlobalSIP),

Nov. 2018, pp. 1159–1163.

	[78].	I. Goodfellow, “Gradient masking causes CLEVER to

overestimate adversarial perturbation size,” Aug. 2018,

arXiv:1804.07870. [Online]. Available: https://arxiv.org/

abs/1804.07870

	[79].	A. Athalye, N. Carlini, and D. Wagner, “Obfuscated

gradients give a false sense of security: Circumventing

defenses to adversarial examples,” Feb. 2018,

arXiv:1802.00420. [Online]. Available: https://arxiv.org/

abs/1802.00420

	[80].	N. Papernot et al., “Towards the science of security

and privacy in machine learning,” Nov. 2016,

arXiv:1611.03814. [Online]. Available: https://arxiv.org/

abs/1611.03814

	[81].	O. Bastani et al., “Measuring neural net robustness

with constraints,” in Proc. Adv. Neural Inf. Process.

Syst., 2016, pp. 2613–2621.

	[82].	N. Narodytska et al., “Verifying properties of binarized

deep neural networks,” in Proc. AAAI Conf. Artif.

Intell., 2018, pp. 6615–6624.

	[83].	S. Dutta et al., “Output range analysis for deep

feedforward neural networks,” in Proc. NASA Formal

Methods Symp. Cham, Switzerland: Springer, 2018,

pp. 121–138.

	[84].	V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating

robustness of neural networks with mixed integer

programming,” in Proc. Int. Conf. Learn. Represent.

(ICLR), 2019, pp. 1–21.

 	 [85]. � M. A. Siddiqui et al., “Detecting cyber attacks using

anomaly detection with explanations and expert

feedback,” in Proc. IEEE Int. Conf. Acoust., Speech

Signal Process. (ICASSP), May 2019, pp. 2872–2876.

 	 [86]. � D. Agrawal et al., “Trojan detection using IC

fingerprinting,” in Proc. IEEE Symp. Secur. Privacy

(SP), May 2007, pp. 296–310.

 	 [87]. � S. Adee, “The hunt for the kill switch,” IEEE Spectr.,

vol. 45, no. 5, pp. 34–39, May 2008.

 	 [88]. � Y. Jin and Y. Makris, “Hardware Trojan detection using

path delay fingerprint,” in Proc. IEEE Int. Workshop

Hardw.-Oriented Secur. Trust, Jun. 2008, pp. 51–57.

 	 [89]. � M. Tehranipoor and F. Koushanfar, “A survey of

hardware Trojan taxonomy and detection,” IEEE

Design Test, vol. 27, no. 1, pp. 10–25, Jan./Feb. 2010.

 	 [90]. � L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic

Design Automation: Synthesis, Verification, and Test.

San Mateo, CA, USA: Morgan Kaufmann, 2009.

 	 [91]. � A. Dubey, R. Cammarota, and A. Aysu, “Maskednet:

The first hardware inference engine aiming power

side-channel protection,” 2019, arXiv:1910.13063.

[Online]. Available: https://arxiv.org/abs/1910.13063

 	 [92]. � Q. Sun et al., “Natural and effective obfuscation by

head inpainting,” in Proc. IEEE/CVF Conf. Comput.

Vis. Pattern Recognit., Jun. 2018, pp. 5050–5059.

 	 [93]. � M. Sharif et al., “Accessorize to a crime: Real and

stealthy attacks on state-of-the-art face recognition,” in

Proc. ACM SIGSAC Conf. Comput. Commun. Secur.-

CCS. New York, NY, USA: ACM, 2016, pp. 1528–1540.

 	 [94]. � B. Wang and N. Z. Gong, “Stealing hyperparameters

in machine learning,” in Proc. IEEE Symp. Secur.

Privacy (SP), May 2018, pp. 36–52.

 	 [95]. � Z. Ghodsi, T. Gu, and S. Garg, “Safetynets: Verifiable

execution of deep neural networks on an untrusted

cloud,” in Proc. Adv. Neural Inf. Process. Syst., 2017,

pp. 4672–4681.

 	 [96]. � P. Mohassel and Y. Zhang, “SecureML: A system for

scalable privacy-preserving machine learning,” in Proc.

IEEE Symp. Secur. Privacy (SP), May 2017, pp. 19–38.

 	 [97]. � J. Liu et al., “Oblivious neural network predictions

via minionn transformations,” in Proc. ACM SIGSAC

Conf. Comput. Commun. Secur.-CCS. New York, NY,

USA: ACM, 2017, pp. 619–631.

 	 [98]. � M. Isakov et al., “Preventing neural network

model exfiltration in machine learning hardware

accelerators,” in Proc. Asian Hardw. Oriented Secur.

Trust Symp. (AsianHOST), Dec. 2018, pp. 62–67.

 	 [99]. � Y. Liu, D. Dachman-Soled, and A. Srivastava,

“Mitigating reverse engineering attacks on deep

neural networks,” in Proc. IEEE Comput. Soc. Annu.

Symp. VLSI (ISVLSI), Jul. 2019, pp. 657–662.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1712.01785
http://arxiv.org/abs/1905.00180
https://arxiv.org/abs/1804.07870
https://arxiv.org/abs/1804.07870
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1611.03814
https://arxiv.org/abs/1611.03814
https://arxiv.org/abs/1910.13063

53March/April 2020

	[100]. � X. Wang et al., “NPUFort: A secure architecture of

DNN accelerator against model inversion attack,” in

Proc. 16th ACM Int. Conf. Comput. Frontiers. New

York, NY, USA: ACM, 2019, pp. 190–196.

	[101]. � T. Hunt et al., “Chiron: Privacy-preserving machine

learning as a service,” 2018, arXiv:1803.05961.

[Online]. Available: https://arxiv.org/abs/1803.05961

	[102]. � A. Tuszynski, “Essential pattern and sequence

sensitivity in semiconductor memories,” Dept. Elect.

Eng., Minnesota Univ., Minneapolis, MN, USA, Tech.

Rep. ADA110263, 1980.

	[103]. � C. Constantinescu, “Trends and challenges in

VLSI circuit reliability,” IEEE Micro, vol. 23, no. 4,

pp. 14–19, Jul. 2003.

	[104]. � R. Baumann, “Soft errors in advanced computer

systems,” IEEE Design Test. Comput., vol. 22, no. 3,

pp. 258–266, May 2005.

	[105]. � W. D. Greason and G. S. P. Castle, “The effects of

electrostatic discharge on microelectronic devices

a review,” IEEE Trans. Ind. Appl., vol. IA-20, no. 2,

pp. 247–252, Mar. 1984.

	[106]. � J. J. Zhang et al., “Building robust machine learning

systems: Current progress, research challenges, and

opportunities,” in Proc. 56th Annu. Design Autom.

Conf. (DAC), 2019, pp. 1–4.

	[107]. � J. Meza et al., “Revisiting memory errors in large-

scale production data centers: Analysis and

modeling of new trends from the field,” in Proc. 45th

Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,

Jun. 2015, pp. 415–426.

	[108]. � W. Wu and N. Seifert, “MBU-Calc: A compact

model for multi-bit upset (MBU) SER estimation,”

in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2015,

pp. SE.2.1–SE.2.6.

	[109]. � M. Shafique et al., “The EDA challenges in the dark

silicon era: Temperature, reliability, and variability

perspectives,” in Proc. 51st Annu. Design Autom.

Conf. (DAC). New York, NY, USA: ACM, 2014, pp. 1–6.

	[110]. � A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing

down aging in multicores,” in Proc. 41st IEEE/ACM

Int. Symp. Microarchit., Nov. 2008, pp. 129–140.

	[111]. � K. Kang et al., “NBTI induced performance

degradation in logic and memory circuits: How

effectively can we approach a reliability solution?”

in Proc. Asia South Pacific Design Autom. Conf.,

Jan. 2008, pp. 726–731.

	[112]. � M. Shafique, F. Khalid, and S. Rehman, “Intelligent

security measures for smart cyber physical systems,”

in Proc. 21st Euromicro Conf. Digit. Syst. Design

(DSD), Aug. 2018, pp. 280–287.

	[113]. � Y. Kim et al., “Flipping bits in memory without

accessing them: An experimental study of DRAM

disturbance errors,” in Proc. ACM/IEEE 41st Int. Symp.

Comput. Archit. (ISCA), Jun. 2014, pp. 361–372.

	[114]. � O. Mutlu and J. S. Kim, “RowHammer: A

retrospective,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., to be published.

	[115]. � S. Khan et al., “The efficacy of error mitigation

techniques for DRAM retention failures: A

comparative experimental study,” in Proc. ACM

SIGMETRICS Perform. Eval. Rev. New York, NY,

USA: ACM, vol. 42, no. 1, 2014, pp. 519–532.

	[116]. � J. Liu et al., “An experimental study of data

retention behavior in modern DRAM devices:

Implications for retention time profiling mechanisms,”

in Proc. 40th Annu. Int. Symp. Comput.

Archit. (ISCA). New York, NY, USA: ACM, 2013,

pp. 60–71.

	[117]. � M. K. Qureshi et al., “AVATAR: A variable-retention-

time (VRT) aware refresh for DRAM systems,” in

Proc. 45th Annu. IEEE/IFIP Int. Conf. Dependable

Syst. Netw., Jun. 2015, pp. 427–437.

	[118]. � S. Khan et al., “Detecting and mitigating data-dependent

DRAM failures by exploiting current memory content,”

in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit.

(MICRO). New York, NY, USA: ACM, 2017, pp. 27–40.

	[119]. � J. T. Blandford, A. E. Waskiewicz, and J. C. Pickel,

“Cosmic ray induced permanent damage in MNOS

EAROMs,” IEEE Trans. Nucl. Sci., vol. 31, no. 6,

pp. 1568–1570, Dec. 1984.

	[120]. � A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial

examples in the physical world,” in Proc. Int. Conf.

Learn. Represent. (ICLR), 2017, pp. 1–14.

	[121]. � K. Eykholt et al., “Robust physical-world attacks

on deep learning visual classification,” in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,

Jun. 2018, pp. 1625–1634.

	[122]. � J. Lu et al., “No need to worry about adversarial

examples in object detection in autonomous

vehicles,” 2017, arXiv:1707.03501. [Online].

Available: https://arxiv.org/abs/1707.03501

	[123]. � Self-Driving Uber Car Kills Pedestrian in

Arizona, Where Robots Roam. Accessed:

14 February 2020. [Online]. Available: https://www.

nytimes.com/2018/03/19/technology/uber-driverless-

fatality.html

	[124]. � P. Reviriego et al., “Protection of memories

suffering MCUs through the selection of the optimal

interleaving distance,” IEEE Trans. Nucl. Sci., vol. 57,

no. 4, pp. 2124–2128, Aug. 2010.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1803.05961
https://arxiv.org/abs/1707.03501
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html

54 IEEE Design&Test

Survey

	[125]. � F. Vargas and M. Nicolaidis, “SEU-tolerant SRAM

design based on current monitoring,” in Proc. Int. Symp.

Fault-Tolerant Comput., Jun. 1994, pp. 106–115.

	[126]. � G.-C. Yang, “Reliability of semiconductor RAMs with

soft-error scrubbing techniques,” IEE Proc. Comput.

Digit. Tech., vol. 142, no. 5, p. 337, 1995.

	[127]. � R. E. Lyons and W. Vanderkulk, “The use of triple-

modular redundancy to improve computer reliability,”

IBM J. Res. Develop., vol. 6, no. 2, pp. 200–209,

Apr. 1962.

	[128]. � R. W. Hamming, “Error detecting and error

correcting codes,” Bell System Tech. J., vol. 29,

no. 2, pp. 147–160, Apr. 1950.

	[129]. � M. Y. Hsiao, “A class of optimal minimum odd-weight-

column SEC-DED codes,” IBM J. Res. Develop.,

vol. 14, no. 4, pp. 395–401, Jul. 1970.

	[130]. � M. Patel et al., “Understanding and modeling on-die

error correction in modern DRAM: An experimental

study using real devices,” in Proc. 49th Annu. IEEE/

IFIP Int. Conf. Dependable Syst. Netw. (DSN),

Jun. 2019, pp. 13–25.

	[131]. � Meet Tesla’s Self-Driving Car Computer and Its Two

AI Brains. Accessed: 14 February 2020. [Online].

Available: https://www.cnet.com/news/meet-tesla-

self-driving-car-computer-and-its-two-ai-brains/

	[132]. � M. A. Hanif et al., “Robust machine learning systems:

Reliability and security for deep neural networks,”

in Proc. IEEE 24th Int. Symp. On-Line Test. Robust

Syst. Design (IOLTS), Jul. 2018, pp. 257–260.

	[133]. � H. Lee, M. Shafique, and M. A. Al Faruque, “Aging-

aware workload management on embedded GPU

under process variation,” IEEE Trans. Comput.,

vol. 67, no. 7, pp. 920–933, Jul. 2018.

	[134]. � M. Patel, J. S. Kim, and O. Mutlu, “The reach profiler

(REAPER): Enabling the mitigation of DRAM retention

failures via profiling at aggressive conditions,” in Proc.

ACM/IEEE 44th Annu. Int. Symp. Comput. Archit.

(ISCA), Jun. 2017, pp. 255–268.

	[135]. � D. Lee et al., “Design-induced latency variation in

modern DRAM chips: Characterization, analysis, and

latency reduction mechanisms,” Proc. ACM Meas.

Anal. Comput. Syst., vol. 1, no. 1, pp. 1–36, Jun. 2017.

	[136]. � S. Khan, D. Lee, and O. Mutlu, “PARBOR: An efficient

system-level technique to detect data-dependent

failures in DRAM,” in Proc. 46th Annu. IEEE/IFIP Int.

Conf. Dependable Syst. Netw. (DSN), Jun. 2016,

pp. 239–250.

	[137]. � J. Zhang et al., “ThUnderVolt: Enabling aggressive

voltage underscaling and timing error resilience for

energy efficient deep learning accelerators,” in Proc.

55th ACM/ESDA/IEEE Design Autom. Conf. (DAC).

New York, NY, USA: ACM, Jun. 2018, p. 19.

	[138]. � P. N. Whatmough et al., “DNN Engine: A 28-nm

timing-error tolerant sparse deep neural network

processor for IoT applications,” IEEE J. Solid-State

Circuits, vol. 53, no. 9, pp. 2722–2731, Sep. 2018.

	[139]. � E. Karl, D. Sylvester, and D. Blaauw, “Timing error

correction techniques for voltage-scalable on-chip

memories,” in Proc. IEEE Int. Symp. Circuits Syst.,

Jul. 2005, pp. 3563–3566.

	[140]. � S. Campos et al., “Timing analysis of industrial real-

time systems,” in Proc. IEEE Workshop Ind.-Strength

Formal Specification Techn., Apr. 1995, pp. 97–107.

	[141]. � M. Pena et al., “Formal verification of safety

properties in timed circuits,” in Proc. 6th Int. Symp.

Adv. Res. Asynchronous Circuits Syst. (ASYNC),

Nov. 2000, pp. 2–11.

	[142]. � S. Schechter et al., “Use ECP, not ECC, for hard

failures in resistive memories,” in Proc. Int. Symp.

Comput. Archit. New York, NY, USA: ACM, 2010,

pp. 141–152.

	[143]. � J. Wang, X. Dong, and Y. Xie, “Point and discard: A

hard-error-tolerant architecture for non-volatile last

level caches,” in Proc. 49th Annu. Design Autom.

Conf. (DAC). New York, NY, USA: ACM, 2012,

pp. 253–258.

	[144]. � J. J. Zhang et al., “Analyzing and mitigating the

impact of permanent faults on a systolic array based

neural network accelerator,” in Proc. IEEE 36th VLSI

Test Symp. (VTS), Apr. 2018, pp. 1–6.

	[145]. � S. Koppula et al., “EDEN: Enabling energy-efficient,

high-performance deep neural network inference

using approximate DRAM,” in Proc. 52nd Annu.

IEEE/ACM Int. Symp. Microarchit. New York, NY,

USA: ACM, Oct. 2019, pp. 166–181.

	[146]. � T. Dreossi et al., “Systematic testing of convolutional

neural networks for autonomous driving,” 2017,

arXiv:1708.03309. [Online]. Available: https://arxiv.

org/abs/1708.03309

	[147]. � H. K. Ekbatani, O. Pujol, and S. Segui, “Synthetic

data generation for deep learning in counting

pedestrians,” in Proc. ICPRAM, 2017, pp. 318–323.

	[148]. � G. J. Stein and N. Roy, “GeneSIS-Rt: Generating

synthetic images for training secondary real-world

tasks,” in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), May 2018, pp. 7151–7158.

	[149]. � Y. Tian et al., “DeepTest: Automated testing of

deep-neural-network-driven autonomous cars,” in

Proc. 40th Int. Conf. Softw. Eng. (ICSE). New York,

NY, USA: ACM, 2018, pp. 303–314.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

https://www.cnet.com/news/
https://arxiv.org/abs/1708.03309
https://arxiv.org/abs/1708.03309

55March/April 2020

	[150]. � R. R. Selvaraju et al., “Grad-cam: Visual explanations

from deep networks via gradient-based localization,” in

Proc. Int. Conf. Comput. Vis., Oct. 2017, pp. 618–626.

	[151]. � J. Adebayo et al., “Sanity checks for saliency maps,”

in Proc. Adv. Neural Inf. Process. Syst., 2018,

pp. 9505–9515.

	[152]. � D. Alvarez-Melis and T. S. Jaakkola, “Towards robust

interpretability with self-explaining neural networks,”

in Proc. Int. Conf. Neural Inf. Process. Syst., 2018,

pp. 7775–7784.

	[153]. � M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic

attribution for deep networks,” in Proc. Int. Conf.

Mach. Learn. (JMLR). Sydney, NSW, Australia:

JMLR.org, 2017, pp. 3319–3328.

	[154]. � A. Levine, S. Singla, and S. Feizi, “Certifiably

robust interpretation in deep learning,” 2019,

arXiv:1905.12105. [Online]. Available: https://arxiv.

org/abs/1905.12105

	[155]. � C.-H. Cheng et al., “Verification of Binarized Neural

Networks via Inter-neuron Factoring,” in Proc. Work.

Conf. Verified Softw., Theories, Tools, Exp. Cham,

Switzerland: Springer, 2018, pp. 279–290.

	[156]. � G. Katz et al., “Reluplex: An efficient SMT solver for

verifying deep neural networks,” in Proc. Int. Conf.

Comput.-Aided Verification. Springer, 2017, pp. 97–117.

	[157]. � X. Huang et al., “Safety verification of deep neural net-

works,” in Proc. Int. Conf. Comput.-Aided Verification.

Cham, Switzerland: Springer, 2017, pp. 3–29.

	[158]. � E. Clarke et al., “Counterexample-guided abstraction

refinement for symbolic model checking,” J. ACM,

vol. 50, no. 5, pp. 752–794, Sep. 2003.

	[159]. � L. Pulina and A. Tacchella, “An abstraction-

refinement approach to verification of artificial

neural networks,” in Proc. Int. Conf. Comput.-Aided

Verification. Berlin, Heidelberg: Springer, 2010,

pp. 243–257.

	[160]. � L. Pulina and A. Tacchella, “Challenging SMT solvers

to verify neural networks,” AI Commun., vol. 25,

no. 2, pp. 117–135, 2012.

	[161]. � K. Scheibler et al., “Towards verification of

artificial neural networks,” in Proc. MBMV, 2015,

pp. 30–40.

	[162]. � Gurobi Optimizer. Accessed: 14 February 2020.

[Online]. Available: https://www.gurobi.com/

	[163]. � IBM ILOG CPLEX Optimization Studio. Accessed:

14 February 2020. [Online]. Available: https://www.

ibm.com/analytics/cplex-optimizer

	[164]. � G. Singh et al., “Fast and effective robustness

certification,” in Proc. Adv. Neural Inf. Process. Syst.,

2018, pp. 10802–10813.

	[165]. � G. Singh et al., “An abstract domain for certifying

neural networks,” in Proc. ACM Program. Lang.,

vol. 3, 2019, pp. 1–30.

	[166]. � S. Wang et al., “Efficient formal safety analysis of

neural networks,” in Proc. Adv. Neural Inf. Process.

Syst. Montréal, Canada: Curran Associates, Inc.,

2018, pp. 6367–6377.

	[167]. � I. E. Grossmann, “Review of nonlinear mixed-integer

and disjunctive programming techniques,” Optim.

Eng., vol. 3, no. 3, pp. 227–252, 2002.

	[168]. � C.-H. Cheng, G. Nuhrenberg, and H. Ruess,

“Maximum resilience of artificial neural networks,”

in Proc. Int. Symp. Automated Technol. Verification

Anal. Springer, 2017, pp. 251–268.

	[169]. � A. Lomuscio and L. Maganti, “An approach to

reachability analysis for feed-forward ReLU neural

networks,” 2017, arXiv:1706.07351. [Online].

Available: https://arxiv.org/abs/1706.07351

	[170]. � P. Kouvaros and A. Lomuscio, “Formal verification

of CNN-based perception systems,” 2018,

arXiv:1811.11373. [Online]. Available: https://arxiv.

org/abs/1811.11373

	[171]. � E. M. Clarke and J. M. Wing, “Formal methods: State

of the art and future directions,” ACM Comput. Surv.,

vol. 28, no. 4, pp. 626–643, Dec. 1996.

	[172]. � C. Murphy, P. Gray, and G. Stewart, “Verified

perceptron convergence theorem,” in Proc. 1st ACM

SIGPLAN Int. Workshop Mach. Learn. Program.

Lang. (MAPL). New York, NY, USA: ACM, 2017,

pp. 43–50.

	[173]. � F. Rosenblatt, “Principles of neurodynamics:

Perceptrons and the theory of brain mechanisms,”

Cornell Aeronaut. Lab, Buffalo, NY, USA, Tech.

Rep. AD0256582, 1961.

	[174]. � T. Gehr et al., “AI2: Safety and robustness

certification of neural networks with abstract

interpretation,” in Proc. IEEE Symp. Secur. Privacy

(SP), May 2018, pp. 3–18.

	[175]. � W. Xiang, H.-D. Tran, and T. T. Johnson, “Specification-

guided safety verification for feedforward neural

networks,” 2018, arXiv:1812.06161. [Online].

Available: https://arxiv.org/abs/1812.06161

	[176]. � W. Xiang and T. T. Johnson, “Reachability analysis

and safety verification for neural network control

systems,” 2018, arXiv:1805.09944. [Online].

Available: https://arxiv.org/abs/1805.09944

	[177]. � W. Xiang, H.-D. Tran, and T. T. Johnson, “Output

reachable set estimation and verification for multilayer

neural networks,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 29, no. 11, pp. 5777–5783, Nov. 2018.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1905.12105
https://arxiv.org/abs/1905.12105
https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://arxiv.org/abs/1706.07351
https://arxiv.org/abs/1811.11373
https://arxiv.org/abs/1811.11373
https://arxiv.org/abs/1812.06161
https://arxiv.org/abs/1805.09944

56 IEEE Design&Test

Survey

	[178]. � G. Singh et al., “Boosting robustness certification

of neural networks,” in Proc. Int. Conf. Learn.

Represent., pp. 1–12, 2018.

[179]. � M. Abdullah Hanif and M. Shafique, “Salvagednn:

salvaging deep neural network accelerators with

permanent faults through saliency-driven fault-aware

mapping,” Philos. Trans. Roy. Soc. A, vol. 378,

no. 2164, pp. 1–23, 2020

[180]. � L.-H. Hoang, M. A. Hanif, and M. Shafique,

“Ft-clipact: Resilience analysis of deep neural

networks and improving their fault tolerance

using clipped activation,” 2019, arXiv preprint

arXiv:1912.00941 [Online].

Muhammad Shafique has been a Professor of
Computer Architecture and Robust Energy-Efficient
Technologies (CARE-Tech.), Institute of Computer
Engineering, Technische Universität Wien (TU Wien),
Vienna, Austria, since November 2016. His research
interests are in computer architecture, power-/energy-
efficient systems, robust computing, hardware security,
brain-inspired computing trends like neuromorphic and
approximate computing, hardware and system-level
design for machine learning and artificial intelligence
(AI), emerging technologies and nanosystems, FPGAs,
MPSoCs, and embedded systems. His research has
a special focus on crosslayer modeling, design, and
optimization of computing and memory systems,
and their deployment in use cases from the Internet-
of-Things (IoT), cyber–physical systems (CPSs), and
ICT for development (ICT4D) domains. Shafique has
a PhD in computer science from the Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany (2011). He is
a Senior Member of the IEEE.

Mahum Naseer is currently pursuing a PhD
in formal methods for resilient embedded systems
at Technische Universität Wien (TU Wien), Vienna,
Austria. Her research interests include reliability
analysis of systems, error control coding, resilient
machine learning systems, and formal methods for
system verification. Naseer has a BE in electronics
engineering from the NED University of Engineering
and Technology, Karachi, Pakistan (2016), and
an MS in electrical engineering from the National
University of Sciences and Technology (NUST),
Islamabad, Pakistan (2018). She is a Student
Member of the IEEE.

Theocharis Theocharides has been
an Associate Professor at the Department of
Electrical and Computer Engineering, University
of Cyprus, Nicosia, Cyprus, since 2006, where he
directs the Embedded and Application-Specific

Systems-on-Chip Laboratory. He has also been
a Faculty Member of the KIOS Research and
Innovation Center of Excellence, University of
Cyprus, since the Center’s inception in 2008. His
research focuses on the design, development,
implementation, and deployment of low-power and
reliable on-chip application-specific architectures,
low-power VLSI design, real-time embedded
systems design, and exploration of energy-reliability
tradeoffs for systems on chip and embedded
systems. His focus lies on acceleration of computer
vision and artificial intelligence algorithms in
hardware, geared toward edge computing, and in
utilizing reconfigurable hardware toward self-aware,
evolvable edge computing systems. Theocharides
has a PhD in computer engineering from Penn State
University, State College, PA, working in the areas
of low-power computer architectures and reliable
system design with emphasis on computer vision
and machine learning applications. He is a Senior
Member of the IEEE and a member of CEDA and
the ACM.

Christos Kyrkou is a Research Associate with
the KIOS Research Center for Intelligent Systems
and Networks, University of Cyprus, Nicosia,
Cyprus. His research interests include real-time
embedded systems, field-programmable gate
arrays and reconfigurable hardware, computer
vision, machine learning, and smart camera
networks. Kyrkou has a BSc, an MSc, and a PhD
in computer engineering from the University of
Cyprus (2008, 2010, and 2014, respectively). He is
a Member of the IEEE.

Onur Mutlu is a Professor of computer science at
ETH Zürich, Zürich, Switzerland. He is also a Faculty
Member at Carnegie Mellon University, Pittsburgh,
PA, where he previously held the William D. and
Nancy W. Strecker Early Career Professorship. His
current broader research interests are in computer
architecture, computing systems, hardware security,
robust systems, and bioinformatics. He is especially
interested in interactions across domains and
between applications, system software, compilers,
and microarchitecture, with a major current focus on
memory and storage systems. A variety of techniques
he, together with his group and collaborators, has
invented over the years have influenced industry and
have been employed in commercial microprocessors
and memory/storage systems. Mutlu has a BS in
computer engineering and psychology from the
University of Michigan, Ann Arbor, MI, and an MS and
a PhD in electrical and computer engineering from the

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

57March/April 2020

interests include high-performance, energy-efficient,
and reliable implementation of machine learning and
deep learning algorithms. Choi has a PhD in electrical
and computer engineering from the University of Illinois
at Urbana-Champaign, Champaign, IL.

 Direct questions and comments about this
article to Muhammad Shafique, Technische
Universität Wien (TU Wien), 1040 Vienna, Austria;
muhammad.shafique@tuwien.ac.at and Theocharis
Theocharides, University of Cyprus, 1678 Nicosia,
Cyprus; ttheocharides@ucy.ac.cy.

University of Texas at Austin, Austin, TX. He is a Fellow
of the ACM and the IEEE.

Lois Orosa held a postdoctoral position in the
SAFARI Research Group, ETH Zürich, Zürich, Swit-
zerland. His current research interests are in com-
puter architecture, hardware security, memory
systems, and machine learning (ML) accelerators.
Orosa has a PhD from the University of Santiago de
Compostela, Santiago, Spain.

Jungwook Choi is currently an Assistant Professor
at Hanyang University, Seoul, South Korea. His research

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:39:56 UTC from IEEE Xplore. Restrictions apply.

mailto:muhammad.shafique@tuwien.ac.at
mailto:ttheocharides@ucy.ac.cy

