
Revisiting RowHammer: An Experimental Analysis

of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim§† Minesh Patel§ A. Giray Yağlıkçı§

Hasan Hassan§ Roknoddin Azizi§ Lois Orosa§ Onur Mutlu§†
§ETH Zürich †Carnegie Mellon University

RowHammer is a circuit-level DRAM vulnerability, first rig-
orously analyzed and introduced in 2014, where repeatedly
accessing data in a DRAM row can cause bit flips in nearby
rows. The RowHammer vulnerability has since garnered sig-
nificant interest in both computer architecture and computer
security research communities because it stems from physi-
cal circuit-level interference effects that worsen with continued
DRAM density scaling. As DRAM manufacturers primarily
depend on density scaling to increase DRAM capacity, future
DRAM chips will likely be more vulnerable to RowHammer than
those of the past. Many RowHammer mitigation mechanisms
have been proposed by both industry and academia, but it is
unclear whether these mechanisms will remain viable solutions
for future devices, as their overheads increase with DRAM’s
vulnerability to RowHammer.

In order to shed more light on how RowHammer affects mod-
ern and future devices at the circuit-level, we first present an
experimental characterization of RowHammer on 1580 DRAM
chips (408× DDR3, 652× DDR4, and 520× LPDDR4) from 300
DRAM modules (60× DDR3, 110× DDR4, and 130× LPDDR4)
with RowHammer protection mechanisms disabled, spanning
multiple different technology nodes from across each of the three
major DRAMmanufacturers. Our studies definitively show that
newer DRAM chips are more vulnerable to RowHammer: as
device feature size reduces, the number of activations needed
to induce a RowHammer bit flip also reduces, to as few as 9.6k
(4.8k to two rows each) in the most vulnerable chip we tested.

We evaluate five state-of-the-art RowHammer mitigation
mechanisms using cycle-accurate simulation in the context of
real data taken from our chips to study how the mitigation
mechanisms scale with chip vulnerability. We find that existing
mechanisms either are not scalable or suffer from prohibitively
large performance overheads in projected future devices given
our observed trends of RowHammer vulnerability. Thus, it is
critical to research more effective solutions to RowHammer.

1. Introduction
DRAM is the dominant main memory technology of nearly

all modern computing systems due to its superior cost-per-
capacity. As such, DRAM critically affects overall system
performance and reliability. Continuing to increase DRAM
capacity requires increasing the density of DRAM cells by
reducing (i.e., scaling) the technology node size (e.g., feature
size) of DRAM, but this scaling negatively impacts DRAM
reliability. In particular, RowHammer [63] is an important
circuit-level interference phenomenon, closely related to tech-
nology scaling, where repeatedly activating a DRAM row
disturbs the values in adjacent rows. RowHammer can result
in system-visible bit flips in DRAM regions that are physi-
cally nearby rapidly accessed (i.e., hammered) DRAM rows.
RowHammer empowers an attacker who has access to DRAM
address X with the ability to modify data in a different lo-
cation Y such that X and Y are physically, but not neces-
sarily logically, co-located. In particular, X and Y must be
located in different DRAM rows that are in close proximity
to one another. Because DRAM is widely used throughout
modern computing systems, many systems are potentially
vulnerable to RowHammer attacks, as shown by recent works
(e.g., [21,26,34,35,50,70,82,90,100,102,108,119,122,123,130]).

RowHammer is a serious challenge for system designers
because it exploits fundamental DRAM circuit behavior that
cannot be easily changed. This means that RowHammer is
a potential threat across all DRAM generations and designs.
Kim et al. [63] show that RowHammer appears to be an effect
of continued DRAM technology scaling [63, 89, 91, 92], which
means that as manufacturers increase DRAM storage density,
their chips are potentially more susceptible to RowHammer.
This increase in RowHammer vulnerability is often quantified
for a given DRAM chip by measuring the number of times a
single row must be activated (i.e., single-sided RowHammer)
to induce the first bit flip. Recently, Yang et al. [133] have
corroborated this hypothesis, identifying a precise circuit-
level charge leakage mechanism that may be responsible for
RowHammer. This leakage mechanism affects nearby circuit
components, which implies that as manufacturers continue
to employ aggressive technology scaling for generational
storage density improvements [42, 53, 86, 126], circuit com-
ponents that are more tightly packed will likely increase a
chip’s vulnerability to RowHammer.

Tomitigate the impact of the RowHammer problem, numer-
ous works propose mitigation mechanisms that seek to pre-
vent RowHammer bit flips from affecting the system. These
include mechanisms to make RowHammer conditions impos-
sible or very difficult to attain (e.g., increasing the default
DRAM refresh rate by more than 7x [63], or probabilistically
activating adjacent rows with a carefully selected probabi-
lity [63]) and mechanisms that explicitly detect RowHam-
mer conditions and intervene (e.g., access counter-based ap-
proaches [57, 63, 77, 113, 114]). However, all of these solu-
tions [2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 24, 25, 27, 30, 33, 38, 41, 44, 57,
62, 63, 67, 77, 78, 79, 116, 123, 127, 128, 129, 134] merely treat the
symptoms of a RowHammer attack (i.e., prevent RowHammer
conditions) without solving the core circuit vulnerability.

To better understand the problem in order to pursue more
comprehensive solutions, prior works study the RowHam-
mer failure mechanism both experimentally [63, 96, 97] and
in simulation [133]. Unfortunately, there has been no work
since the original RowHammer paper [63] that provides a
rigorous characterization-based study to demonstrate how
chips’ vulnerabilities to RowHammer (i.e., the minimum num-
ber of activations required to induce the first RowHammer
bit flip) scale across different DRAM technology generations.
While many works [5, 64, 90, 91, 92] speculate that modern
chips are more vulnerable, there is no rigorous experimental
study that demonstrates exactly how the minimum activa-
tion count to induce the first RowHammer bit flip and other
RowHammer characteristics behave in modern DRAM chips.
Such an experimental study would enable us to predict future
chips’ vulnerability to RowHammer and estimate whether
existing RowHammer mitigation mechanisms can effectively
prevent RowHammer bit flips in modern and future chips.
Our goal in this work is to experimentally demonstrate

how vulnerable modern DRAM chips are to RowHammer at
the circuit-level and to study how this vulnerability will scale
going forward. To this end, we provide a rigorous experimen-
tal characterization of 1580 DRAM chips (408× DDR3, 652×
DDR4, and 520× LPDDR4) from 300 modern DRAM modules
(60× DDR3, 110× DDR4, and 130× LPDDR4) from across all

638

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00059

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

three major DRAM manufacturers, spanning across multiple
different technology node generations for each manufacturer.
To study the RowHammer vulnerability at the circuit level in-
stead of at the system level, we disable all accessible RowHam-
mer mitigation mechanisms.1 We observe that the worst-case
circuit-level RowHammer conditions for a victim row are
when we repeatedly access both physically-adjacent aggres-
sor rows as rapidly as possible (i.e., double-sided RowHam-
mer). To account for double-sided RowHammer in our study,
we define Hammer Count (HC) as the number of times each
physically-adjacent row is activated and HCfirst as the mini-
mum HC required to cause the first RowHammer bit flip in
the DRAM chip. For each DRAM type (i.e., DDR3, DDR4,
LPDDR4), we have chips from at least two different tech-
nology nodes, and for each of the LPDDR4 chips, we know
the exact process technology node: 1x or 1y. This enables
us to study and demonstrate the effects of RowHammer on
two distinct independent variables: DRAM type and DRAM
technology node.

Our experiments study the effects of manipulating two key
testing parameters at a fixed ambient temperature on both
aggregate and individual DRAM cell failure characteristics:
(1) hammer count (HC), and (2) data pattern written to DRAM.

Our experimental results definitively show that newer
DRAM chips manufactured with smaller technology nodes
are increasingly vulnerable to RowHammer bit flips. For ex-
ample, we find that HCfirst across all chips of a given DRAM
type reduces greatly from older chips to newer chips (e.g.,
69.2k to 22.4k in DDR3, 17.5k to 10k in DDR4, and 16.8k to
4.8k in LPDDR4 chips).2

Using the data from our experimental studies, we perform
cycle-accurate simulation to evaluate the performance over-
heads of five state-of-the-art RowHammer mitigation mecha-
nisms [63, 77, 116, 134] and compare them to an ideal refresh-
based RowHammer mitigation mechanism that selectively
refreshes a row only just before it is about to experience a
RowHammer bit flip. We show that, while the state-of-the-art
mechanisms are reasonably effective at mitigating RowHam-
mer in today’s DRAM chips (e.g., 8% average performance loss
in our workloads when PARA [63] is used in a DRAM chip
with an HCfirst value of 4.8k), they exhibit prohibitively large
performance overheads for projected degrees of RowHam-
mer vulnerability (i.e., lower HCfirst values) in future DRAM
chips (e.g., the most-scalable existing RowHammer mitiga-
tion mechanism causes 80% performance loss when HCfirst
is 128). This means that the state-of-the-art RowHammer
mitigation mechanisms are not scalable in the face of worsen-
ing RowHammer vulnerability, and DRAM-based computing
systems will either require stronger failure mitigation mech-
anisms or circuit-level modifications that address the root
cause of the RowHammer vulnerability.
Our simulation results of an ideal refresh-based mitiga-

tion mechanism, which selectively refreshes only those rows
that are about to experience a RowHammer bit flip, demon-
strates significant opportunity for developing a refresh-based
RowHammer mitigation mechanism with low performance
overhead that scales reasonably to low HCfirst values. How-
ever, we observe that even this ideal mechanism significantly
impacts overall system performance at very lowHCfirst values,
indicating the potential need for a better approach to solving

1We cannot disable on-die ECC in our LPDDR4 chips [53, 68, 69, 88, 98].
2While we do not definitively know the exact technology nodes used in

our DDR3/DDR4 chips, we group our chips into two sets (i.e., new and old)
based on their manufacturing dates, datasheet publication dates, purchase
dates, and distinctive RowHammer characterization results. We compare our
results against those from our LPDDR4 chips whose exact technology nodes
we know and observe the same trend of higher RowHammer vulnerability
with newer chips (that likely use smaller DRAM process technology nodes).

RowHammer in the future. We discuss directions for future
research in this area in Section 6.3.1.
We make the following contributions in this work:

• We provide the first rigorous RowHammer failure charac-
terization study of a broad range of real modern DRAM
chips across different DRAM types, technology node gener-
ations, and manufacturers. We experimentally study 1580
DRAM chips (408×DDR3, 652×DDR4, and 520× LPDDR4)
from 300 DRAM modules (60× DDR3, 110× DDR4, and
130× LPDDR4) and present our RowHammer characteriza-
tion results for both aggregate RowHammer failure rates
and the behavior of individual cells while sweeping the
hammer count (HC) and stored data pattern.

• Via our rigorous characterization studies, we definitively
demonstrate that the RowHammer vulnerability signifi-
cantly worsens (i.e., the number of hammers required to
induce a RowHammer bit flip, HCfirst, greatly reduces) in
newer DRAM chips (e.g., HCfirst reduces from 69.2k to 22.4k
in DDR3, 17.5k to 10k in DDR4, and 16.8k to 4.8k in LPDDR4
chips across multiple technology node generations).

• We demonstrate, based on our rigorous evaluation of five
state-of-the-art RowHammer mitigation mechanisms, that
even though existing RowHammer mitigation mechanisms
are reasonably effective at mitigating RowHammer in to-
day’s DRAM chips (e.g., 8% average performance loss on
our workloads when HCfirst is 4.8k), they will cause sig-
nificant overhead in future DRAM chips with even lower
HCfirst values (e.g., 80% average performance loss with the
most scalable mechanism when HCfirst is 128).

• We evaluate an ideal refresh-based mitigation mechanism
that selectively refreshes a row only just before it is about
to experience a RowHammer bit flip, and find that in chips
with high vulnerability to RowHammer, there is still signif-
icant opportunity for developing a refresh-based RowHam-
mer mitigation mechanismwith low performance overhead
that scales to low HCfirst values. We conclude that it is crit-
ical to research more effective solutions to RowHammer,
and we provide promising directions for future research.

2. DRAM Background
In this section, we describe the necessary background on

DRAM organization and operation to explain the RowHam-
mer vulnerability and its implications for real systems.
For further detail, we refer the reader to prior studies on
DRAM [16, 17, 18, 19, 22, 28, 29, 39, 40, 55, 58, 63, 65, 66, 71, 72, 73,
74, 75, 76, 109, 110, 111, 112, 135].

2.1. DRAM Organization
A typical computing system includes multiple DRAM chan-

nels, where each channel has a separate I/O bus and operates
independently of the other channels in the system. As Fig-
ure 1 (left) illustrates, a memory controller can interface with
multiple DRAM ranks by time-multiplexing the channel’s I/O
bus between the ranks. Because the I/O bus is shared, the
memory controller serializes accesses to different ranks in
the same channel. A DRAM rank comprises multiple DRAM
chips that operate in lockstep. The combined data pins from
all chips form the DRAM data bus.

�
�
�
�

�

�
�
�
�
	

�
����������		
�

����

������

�����

����������

������������
	

���������

� !�"��#

�

$

�
�
�
%
�
�
�
�

����

&��'

(�)

����

&��'

(&����)

�
�
�
�

�
�
�
�
�

���
���	����� ��������&�#

Figure 1: A typical DRAM-based system.

DRAM Chip Organization. A modern DRAM chip con-
tains billions of cells, each of which stores a single bit of data.

639

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

Within a chip, cells are organized hierarchically to provide
high density and performance. As Figure 1 (right) shows,
a DRAM chip is composed of multiple (e.g., 8–16 [45, 46])
DRAM banks. All banks within a chip share the internal data
and command bus.

Figure 2 (left) shows the internal organization of a DRAM
bank. A bank comprises many (e.g., 128) subarrays [18, 65].
Each subarray contains a two-dimensional array of DRAM
cells arranged in rows and columns. When accessing DRAM,
the memory controller first provides the address of the row to
be accessed. Then, the row decoder, which is also hierarchi-
cally organized into global and local components, opens the
row by driving the corresponding wordline. DRAM cells that
are connected to the same wordline are collectively referred
to as a DRAM row. To read and manipulate a cell’s contents,
a wire (i.e., bitline) connects a column of cells to a sense am-
plifier. The collection of sense amplifiers in a subarray is
referred to as the local row buffer. The local row buffers of
the subarrays in a bank are connected to a per-bank global
row buffer, which interfaces with the internal command and
data bus of the DRAM chip.

As Figure 2 (right) shows, a DRAM cell consists of an access
transistor and a capacitor. The wordline is connected to the
gate of the access transistor that, when enabled, connects the
cell capacitor to the bitline. A DRAM cell stores a single bit
of data based on the charge level of the cell capacitor (e.g.,
a charged capacitor represents a logical value of “1” and a
discharged capacitor a value of “0”, or vice versa). Unfortu-
nately, charge leaks from the storage capacitor over time due
to various charge leakage paths in the circuit components. To
ensure that the cell does not leak enough charge to cause a bit
flip, a DRAM cell needs to be periodically refreshed [83, 84].

Figure 2: DRAM bank and cell.

2.2. DRAM Operation
A memory controller issues a sequence of DRAM com-

mands to access data in a DRAM chip. First, the memory
controller issues an activate (ACT) command to open a row
that corresponds to the memory address to be accessed. Open-
ing (i.e., activating) a DRAM row causes the data in the target
DRAM row to be copied to its corresponding local row buffer.
Second, the memory controller issues either a READ or a
WRITE command to the DRAM to read out or update the
target data within the row buffer, typically 32 or 64 bytes
split across all chips in the rank. The memory controller can
issue multiple consecutive READ andWRITE commands to
an open row. While a row is open, its cells remain connected
to the sense amplifiers in the local row buffer, so changes to
the data stored in the row buffer propagate to the DRAM cells.
When accesses to the open row are complete, the memory
controller issues a precharge (PRE) command to close the open
row and prepare the bank to activate a different row.
DRAM Refresh. DRAM cell capacitors lose their charge

over time [83,84,107], potentially resulting in bit flips. A cell’s
retention time refers to the duration for which its capacitor
maintains the correct value. Cells throughout a DRAM chip
have different retention times, ranging from milliseconds to
hours [36, 37, 40, 53, 54, 56, 61, 71, 80, 83, 84, 99, 101, 124]. To
prevent data loss, the memory controller issues regular refresh
(REF) commands that ensure every DRAM cell is refreshed

at fixed intervals (typically every 32 or 64 ms according to
DRAM specifications [46, 47, 48]).

2.3. RowHammer: DRAM Disturbance Errors
Modern DRAM devices suffer from disturbance errors that

occur when a high rate of accesses to a single DRAM row
unintentionally flip the values of cells in nearby rows. This
phenomenon is known as RowHammer [63]. It inherently
stems from electromagnetic interference between nearby
cells. RowHammer is exacerbated by reduction in pro-
cess technology node size because adjacent DRAM cells be-
come both smaller and closer to each other. Therefore, as
DRAM manufacturers continue to increase DRAM storage
density, a chip’s vulnerability to RowHammer bit flips in-
creases [63, 90, 92].

RowHammer exposes a system-level security vulnerability
that has been studied by many prior works both from the
attack and defense perspectives. Prior works demonstrate
that RowHammer can be used to mount system-level attacks
for privilege escalation (e.g., [21, 26, 34, 35, 50, 82, 100, 102, 108,
119,122,130]), leaking confidential data (e.g., [70]), and denial
of service (e.g., [34,82]). These works effectively demonstrate
that a system must provide protection against RowHammer
to ensure robust (i.e., reliable and secure) execution.

Prior works propose defenses against RowHammer attacks
both at the hardware (e.g., [4,5,6,7,8,24,27,30,33,38,52,57,63,
77,104,113,116,134]) and software (e.g., [2,3,10,11,12,15,25,41,
44, 62, 63, 67, 78, 79, 123, 127, 128, 129]) levels. DRAM manufac-
turers themselves employ in-DRAM RowHammer prevention
mechanisms such as Target Row Refresh (TRR) [46], which
internally performs proprietary operations to reduce the vul-
nerability of a DRAM chip against potential RowHammer
attacks, although these solutions have been recently shown
to be vulnerable [26]. Memory controller and system manu-
facturers have also included defenses such as increasing the
refresh rate [2, 3, 78] and Hardware RHP [43, 95, 121, 125]. For
a detailed survey of the RowHammer problem, its underlying
causes, characteristics, exploits building on it, and mitigation
techniques, we refer the reader to [92].

3. Motivation and Goal
Despite the considerable research effort expended towards

understanding and mitigating RowHammer, scientific lit-
erature still lacks rigorous experimental data on how the
RowHammer vulnerability is changing with the advance-
ment of DRAM designs and process technologies. In general,
important practical concerns are difficult to address with
existing data in literature. For example:
• How vulnerable to RowHammer are future DRAM chips
expected to be at the circuit level?

• How well would RowHammer mitigation mechanisms pre-
vent or mitigate RowHammer in future devices?

• What types of RowHammer solutions would cope best
with increased circuit-level vulnerability due to continued
technology node scaling?

While existing experimental characterization studies [63, 96,
97] take important steps towards building an overall under-
standing of the RowHammer vulnerability, they are too scarce
and collectively do not provide a holistic view of RowHammer
evolution into the modern day. To help overcome this lack of
understanding, we need a unifying study of the RowHammer
vulnerability of a broad range of DRAM chips spanning the
time since the original RowHammer paper was published in
2014 [63].

To this end, our goal in this paper is to evaluate and under-
stand how the RowHammer vulnerability of real DRAM chips
at the circuit level changes across different chip types, manu-
facturers, and process technology node generations. Doing so
enables us to predict how the RowHammer vulnerability in
DRAM chips will scale as the industry continues to increase

640

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

storage density and reduce technology node size for future
chip designs. To achieve this goal, we perform a rigorous
experimental characterization study of DRAM chips from
three different DRAM types (i.e., DDR3, DDR4, and LPDDR4),
three major DRAM manufacturers, and at least two different
process technology nodes from each DRAM type. We show
how different chips from different DRAM types and technol-
ogy nodes (abbreviated as “type-node” configurations) have
varying levels of vulnerability to RowHammer. We compare
the chips’ vulnerabilities against each other and project how
they will likely scale when reducing the technology node
size even further (Section 5). Finally, we study how effec-
tive existing RowHammer mitigation mechanisms will be,
based on our observed and projected experimental data on
the RowHammer vulnerability (Section 6).

4. Experimental Methodology
We describe our methodology for characterizing DRAM

chips for RowHammer.

4.1. Testing Infrastructure
In order to characterize the effects of RowHammer across

a broad range of modern DRAM chips, we experimentally
study DDR3, DDR4, and LPDDR4 DRAM chips across a
wide range of testing conditions. To achieve this, we use
two different testing infrastructures: (1) the SoftMC frame-
work [40, 106] capable of testing DDR3 and DDR4 DRAM
modules in a temperature-controlled chamber and (2) an in-
house temperature-controlled testing chamber capable of
testing LPDDR4 DRAM chips.
SoftMC. Figure 3 shows our SoftMC setup for testing

DDR4 chips. In this setup, we use an FPGA board with a
Xilinx Virtex UltraScale 95 FPGA [132], two DDR4 SODIMM
slots, and a PCIe interface. To open up space around the
DDR4 chips for temperature control, we use a vertical DDR4
SODIMM riser board to plug a DDR4 module into the FPGA
board. We heat the DDR4 chips to a target temperature using
silicone rubber heaters pressed to both sides of the DDR4
module. We control the temperature using a thermocouple,
which we place between the rubber heaters and the DDR4
chips, and a temperature controller. To enable fast data trans-
fer between the FPGA and a host machine, we connect the
FPGA to the host machine using PCIe via a 30 cm PCIe ex-
tender. We use the host machine to program the SoftMC
hardware and collect the test results. Our SoftMC setup for
testing DDR3 chips is similar but uses a Xilinx ML605 FPGA
board [131]. Both infrastructures provide fine-grained con-
trol over the types and timings of DRAM commands sent to
the chips under test and provide precise temperature control
at typical operating conditions.

Figure 3: Our SoftMC infrastructure [40, 106] for testing
DDR4 DRAM chips.

LPDDR4 Infrastructure. Our LPDDR4 DRAM testing
infrastructure uses industry-developed in-house testing hard-
ware for package-on-package LPDDR4 chips. The LPDDR4
testing infrastructure is further equipped with cooling and

heating capabilities that also provide us with precise temper-
ature control at typical operating conditions.

4.2. Characterized DRAM Chips
Table 1 summarizes the DRAM chips that we test using

both infrastructures. We have chips from all of the three
major DRAMmanufacturers spanning DDR3, DDR4, and two
known technology nodes of LPDDR4. We refer to the DRAM
type (e.g., LPDDR4) and technology node of a DRAM chip
as a DRAM type-node configuration (e.g., LPDDR4-1x). For
DRAM chips whose technology node we do not exactly know,
we identify their node as old or new.

Table 1: Summary of DRAM chips tested.

DRAM Number of Chips (Modules) Tested
type-node Mfr. A Mfr. B Mfr. C Total

DDR3-old 56 (10) 88 (11) 28 (7) 172 (28)
DDR3-new 80 (10) 52 (9) 104 (13) 236 (32)

DDR4-old 112 (16) 24 (3) 128 (18) 264 (37)
DDR4-new 264 (43) 16 (2) 108 (28) 388 (73)

LPDDR4-1x 12 (3) 180 (45) N/A 192 (48)
LPDDR4-1y 184 (46) N/A 144 (36) 328 (82)

DDR3 and DDR4. Among our tested DDR3 modules, we
identify two distinct batches of chips based on their manu-
facturing date, datasheet publication date, purchase date, and
RowHammer characteristics. We categorize DDR3 devices
with a manufacturing date earlier than 2014 as DDR3-old
chips, and devices with a manufacturing date including and
after 2014 as DDR3-new chips. Using the same set of proper-
ties, we identify two distinct batches of devices among the
DDR4 devices. We categorize DDR4 devices with a manu-
facturing date before 2018 or a datasheet publication date of
2015 as DDR4-old chips and devices with a manufacturing
date including and after 2018 or a datasheet publication date
of 2016 or 2017 as DDR4-new chips. Based on our observa-
tions on RowHammer characteristics from these chips, we
expect that DDR3-old/DDR4-old chips are manufactured at
an older date with an older process technology compared to
DDR3-new/DDR4-new chips, respectively. This enables us
to directly study the effects of shrinking process technology
node sizes in DDR3 and DDR4 DRAM chips.
LPDDR4. For our LPDDR4 chips, we have two known

distinct generations manufactured with different technology
node sizes, 1x-nm and 1y-nm, where 1y-nm is smaller than
1x-nm. Unfortunately, we are missing data from some genera-
tions of DRAM from specific manufacturers (i.e., LPDDR4-1x
from manufacturer C and LPDDR4-1y from manufacturer B)
since we did not have access to chips of these manufacturer-
technology node combinations due to confidentiality issues.
Note that while we know the external technology node val-
ues for the chips we characterize (e.g., 1x-nm, 1y-nm), these
values are not standardized across different DRAM manufac-
turers and the actual values are confidential. This means that
a 1x chip from one manufacturer is not necessarily manufac-
tured with the same process technology node as a 1x chip
from another manufacturer. However, since we do know rela-
tive process node sizes of chips from the same manufacturer,
we can directly observe how technology node size affects
RowHammer on LPDDR4 DRAM chips.

4.3. Effectively Characterizing RowHammer
In order to characterize RowHammer effects on our DRAM

chips at the circuit-level, we want to test our chips at the
worst-case RowHammer conditions. We identify two condi-
tions that our tests must satisfy to effectively characterize
RowHammer at the circuit level: our testing routines must
both: 1) run without interference (e.g., without DRAM refresh
or RowHammer mitigation mechanisms) and 2) systemati-
cally test each DRAM row’s vulnerability to RowHammer

641

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer effects at the circuit level, we want to mini-
mize the external factors that may limit 1) the effectiveness of
our tests or 2) our ability to effectively characterize/observe
circuit-level effects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit flips), we disable all
DRAM self-regulation events such as refresh and calibration,
using control registers in the memory controller. This guar-
antees consistent testing without confounding factors due
to intermittent events (e.g., to avoid the possibility that a
victim row is refreshed during a RowHammer test routine
such that we observe fewer RowHammer bit flips). Second,
we want to directly observe the circuit-level bit flips such
that we can make conclusions about DRAM’s vulnerability
to RowHammer at the circuit technology level rather than
the system level. To this end, to the best of our knowledge,
we disable all DRAM-level (e.g., TRR [26, 46, 48]) and system-
level RowHammer mitigation mechanisms (e.g., pTRR [1])
along with all forms of rank-level error-correction codes
(ECC), which could obscure RowHammer bit flips. Unfor-
tunately, all of our LPDDR4-1x and LPDDR4-1y chips use on-
die ECC [53,68,69,88,98] (i.e., an error correcting mechanism
that corrects single-bit failures entirely within the DRAM
chip [98]), which we cannot disable. Third, we ensure that
the core loop of our RowHammer test runs for less than 32 ms
(i.e., the lowest refresh interval specified by manufacturers
to prevent DRAM data retention failures across our tested
chips [45,46,48,54,83,99]) so that we do not conflate retention
failures with RowHammer bit flips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 34, 63, 130] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit flips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
flips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit flips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [45], DDR4 (50ns) [46], LPDDR4 (60ns) [48]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identification of physical rows N – 1

and N + 1 for a given row N , we reverse-engineer the undoc-
umented and confidential logical-to-physical DRAM-internal
row address remapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit flips [63]. By repeat-
ing this analysis across rows throughout the DRAM chip, we
can deduce the address mappings for each type of chip that
we test. We can then use this mapping information to quickly
test RowHammer effects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive

rows such that the first row is an even row (e.g., rows 2 and
3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit flips in either
of the two consecutive rows and 2) a near equivalent number
of RowHammer bit flips in each of the four immediately ad-
jacent rows: the two previous consecutive rows (e.g., rows 0
and 1) and the two subsequent consecutive rows (e.g., rows
4 and 5). This indicates a row address remapping that is in-
ternal to the DRAM chip such that every pair of consecutive
rows share the same internal wordline. To account for this
DRAM-internal row address remapping, we test each row
N in LPDDR4-1x chips from manufacturer B by repeatedly
accessing physical rows N – 2 and N + 2.

Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50◦C:
1. Hammer count (HC). We test the effects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 32ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [54,83,99]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 presents the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For different data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-
gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit flips on a fully-charged
row, which ensures that bit flips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit flips in the victim
row by first activating aggressor_row1 then aggressor_row2,

Algorithm 1: DRAM RowHammer Characterization

1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 → HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit flips to storage
16 Restore bit flips to original values

642

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

HC times. After the core loop of our RowHammer test, we
re-enable DRAM refresh (line 14) to prevent retention failures
and record the observed bit flips to secondary storage (line 15)
for analysis (presented in Section 5). Finally, we prepare to
test the next HC value in the sweep by restoring the observed
bit flips to their original values (Line 16) depending on the
data pattern (DP) being tested.
Fairly Comparing Data Across Infrastructures. Our

carefully-crafted RowHammer test routine allows us to com-
pare our test results between the two different testing infras-
tructures. This is because, as we described earlier, we 1) re-
verse engineer the row address mappings of each DRAM con-
figuration such that we effectively test double-sided RowHam-
mer on every single row, 2) issue activations as fast as possible
for each chip, such that the activation rates are similar across
infrastructures, and 3) disable all sources of interference in
our RowHammer tests.

5. RowHammer Characterization
In this section, we present our comprehensive characteri-

zation of RowHammer on the 1580 DRAM chips we test.3

5.1. RowHammer Vulnerability
We first examine which of the chips that we test are sus-

ceptible to RowHammer. Across all of our chips, we sweep
the hammer count (HC) between 2K and 150K (i.e., 4k and
300k activates for our double-sided RowHammer test) and
observe whether we can induce any RowHammer bit flips at
all in each chip. We find that we can induce RowHammer bit
flips in all chips except many DDR3 chips. Table 2 shows the
fraction of DDR3 chips in which we can induce RowHammer
bit flips (i.e., RowHammerable chips).

Table 2: Fraction of DDR3 DRAM chips vulnerable to
RowHammer when HC < 150k.

DRAM RowHammerable chips
type-node Mfr. A Mfr. B Mfr. C

DDR3-old 24/88 0/88 0/28
DDR3-new 8/72 44/52 96/104

Observation 1. Newer DRAM chips appear to be more
vulnerable to RowHammer based on the increasing fraction
of RowHammerable chips from DDR3-old to DDR3-new DRAM
chips of manufacturers B and C.
We find that the fraction of manufacturer A’s chips that

are RowHammerable decreases from DDR3-old to DDR3-new
chips, but we also note that the number of RowHammer bit
flips that we observe across each of manufacturer A’s chips
is very low (< 20 on average across RowHammerable chips)
compared to the number of bit flips found in manufacturer B
and C’s DDR3-new chips (87k on average across RowHam-
merable chips) when HC = 150K . Since DDR3-old chips of
all manufacturers and DDR3-new chips of manufacturer A
have very few to no bit flips, we refrain from analyzing and
presenting their characteristics in many plots in Section 5.

5.2. Data Pattern Dependence
To study data pattern effects on observable RowHam-

mer bit flips, we test our chips using Algorithm 1 with
hammer_count (HC) = 150k at 50◦C, sweeping the 1)
victim_row and 2) data_pattern (as described in Section 4.3).4

We first examine the set of all RowHammer bit flips that
we observe when testing with different data patterns for a
givenHC. For each data pattern, we run our RowHammer test

3We list our full set of chips in Appendix A of our extended technical
report [59] due to space constraints in this paper.

4Note that for a given data pattern (DP), the same data is always writ-
ten to victim_row. For example, when testing Rowstripe0, every byte in
victim_row is always written with 0x00 and every byte in the two physically-
adjacent rows are written with 0xFF.

routine ten times. We then aggregate all unique RowHammer
bit flips per data pattern. We combine all unique RowHam-
mer bit flips found by all data patterns and iterations into a
full set of observable bit flips. Using the combined data, we
calculate the fraction of the full set of observable bit flips that
each data pattern identifies (i.e., the data pattern’s coverage).
Figure 4 plots the coverage (y-axis) per individual data pat-
tern (shared x-axis) for a single representative DRAM chip
from each DRAM type-node configuration that we test. Each
row of subplots shows the coverages for chips of the same
manufacturer (indicated on the right y-axis), and the columns
show the coverages for chips of the same DRAM type-node
configuration (e.g., DDR3-new).

Not Enough
Bit Flips

M
fr. A

M
fr. B

M
fr. C

%
 o

f a
ll o

bs
er

ve
d

Ro
wH

am
m

er
 b

it
flip

s

Data Pattern

DDR3-new DDR4-old LPDDR4-1xDDR4-new LPDDR4-1y

No Chips

No Chips

Not Enough
Data

0
20
40
60
80

100
0

20
40
60
80

100
0

20
40
60
80

100

RS
0

RS
1

CS
0

CS
1

CH
0

CH
1

RS
0

RS
1

CS
0

CS
1

CH
0

CH
1

RS
0

RS
1

CS
0

CS
1

CH
0

CH
1

RS
0

RS
1

CS
0

CS
1

CH
0

CH
1

RS
0

RS
1

CS
0

CS
1

CH
0

CH
1

Figure 4: RowHammer bit flip coverage of different data pat-
terns (described in Section 4.3) for a single representative
DRAM chip of each type-node configuration.

Observation 2. Testing with different data patterns is es-
sential for comprehensively identifying RowHammer bit flips
because no individual data pattern achieves full coverage alone.
Observation 3. The worst-case data pattern (shown in Ta-

ble 3) is consistent across chips of the same manufacturer and
DRAM type-node configuration.5

Table 3: Worst-case data pattern for each DRAM type-node
configuration at 50◦C split into different manufacturers.

DRAM Worst Case Data Pattern at 50◦C
type-node Mfr. A Mfr. B Mfr. C

DDR3-new N/A Checkered0 Checkered0
DDR4-old RowStripe1 RowStripe1 RowStripe0
DDR4-new RowStripe0 RowStripe0 Checkered1
LPDDR4-1x Checkered1 Checkered0 N/A
LPDDR4-1y RowStripe1 N/A RowStripe1

We believe that different data patterns induce the most
RowHammer bit flips in different chips because DRAMmanu-
facturers apply a variety of proprietary techniques for DRAM
cell layouts to maximize the cell density for different DRAM
type-node configurations. For the remainder of this paper, we
characterize each chip using only its worst-case data pattern.6

5.3. Hammer Count (HC) Effects
We next study the effects of increasing the hammer count

on the number of observed RowHammer bit flips across our

5We do not consider the true/anti cell pattern of a chip [26, 63, 83] and
agnostically program the data pattern accordingly into the DRAM array.
More RowHammer bit flips can be induced by considering the true/anti-cell
pattern of each chip and devising corresponding data patterns to exploit this
knowledge [26].

6We use the worst-case data pattern to 1) minimize the extensive testing
time, 2) induce many RowHammer bit flips, and 3) experiment at worst-case
conditions. A diligent attacker would also try to find the worst-case data
pattern to maximize the probability of a successful RowHammer attack.

643

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

chips. Figure 5 plots the effects of increasing the number of
hammers on the RowHammer bit flip rate7 for our tested
DRAM chips of various DRAM type-node configurations
across the threemajor DRAMmanufacturers. For all chips, we
hammer each row, sweeping HC between 10,000 and 150,000.
For each HC value, we plot the average rate of observed
RowHammer bit flips across all chips of a DRAM type-node
configuration.

DDR3-new DDR4-old DDR4-new LPDDR4-1x LPDDR4-1y

Hammer Count (HC)

Ro
wH

am
m

er

Bi
t F

lip
 R

at
e

Mfr. A Mfr. B Mfr. C

105104 105 105104

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

DDR4-old

DDR4-new

DDR4-old
DDR4-new

DDR4-new

DDR4-old

10410-11

Figure 5: Hammer count (HC) vs. RowHammer bit flip rate
across DRAM type-node configurations.

Observation 4. The log of the number of RowHammer bit
flips has a linear relationship with the log of HC.8

We observe this relationship betweenHC and RowHammer
bit flip rate because more accesses to a single row results in
more cell-to-cell interference, and therefore more charge is
lost in victim cells of nearby rows.

We examine the effects of DRAM technology node on the
RowHammer bit flip rate in Figure 5. We observe that the
bit flip rate curve shifts upward and leftward when going
from DDR4-old to DDR4-new chips, indicating respectively,
1) a higher rate of bit flips for the same HC value and 2)
occurrence of bit flips at lower HC values, as technology
node size reduces from DDR4-old to DDR4-new.
Observation 5. Newer DDR4 DRAM technology nodes show

a clear trend of increasing RowHammer bit flip rates: the same
HC value causes an increased average RowHammer bit flip
rate from DDR4-old to DDR4-new DRAM chips of all DRAM
manufacturers.
We believe that due to increased density of DRAM chips

from older to newer technology node generations, cell-to-cell
interference increases and results in DRAM chips that are
more vulnerable to RowHammer bit flips.

5.4. RowHammer Spatial Effects
We next experimentally study the spatial distribution of

RowHammer bit flips across our tested chips. In order to
normalize the RowHammer effects that we observe across
our tested chips, we first take each DRAM chip and use a
hammer count specific to that chip to result in a RowHammer
bit flip rate of 10–6.9 For each chip, we analyze the spatial
distribution of bit flips throughout the chip. Figure 6 plots the
fraction of RowHammer bit flips that occur in a given row
offset from the victim_row out of all observed RowHammer
bit flips. Each column of subplots shows the distributions for
chips of different manufacturers and each row of subplots
shows the distribution for a different DRAM type-node con-
figuration. The error bars show the standard deviation of the
distribution across our tested chips. Note that the repeatedly-
accessed rows (i.e., aggressor rows) are at x = 1 and x = –1
for all plots except in LPDDR4-1x chips from manufacturer B,
where they are at x = –2 and x = 2 (due to the internal address
remapping that occurs in these chips as we describe in Sec-
tion 4.3). Because an access to a row essentially refreshes the
data in the row, repeatedly accessing aggressor rows during
the core loop of the RowHammer test prevents any bit flips
from happening in the aggressor rows. Therefore, there are

7We define the RowHammer bit flip rate as the number of observed
RowHammer bit flips to the total number of bits in the tested DRAM rows.

8Our observation is consistent with prior work [97].
9We choose a RowHammer bit flip rate of 10–6 since we are able to

observe this bit flip rate in most chips that we characterize with HC < 150k.

no RowHammer bit flips in the aggressor rows across each
DRAM chip in our plots (i.e., y = 0 for x = [–2, –1, 2, 3] for
LPDDR4-1x chips from manufacturer B and for x = 1 and
x = –1 for all other chips).

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
Ha

m
m

er
 b

it
flip

s

wi

th
 d

ist
an

ce
 X

 fr
om

 th
e

vic
tim

 ro
w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure 6: Distribution of RowHammer bit flips across row
offsets from the victim row.

We make three observations from Figure 6. First, we ob-
serve a general trend across DRAM type-node configurations
of a given DRAM manufacturer where newer DRAM tech-
nology nodes have an increasing number of rows that are
susceptible to RowHammer bit flips that are farther from the
victim row. For example, in LPDDR4-1y chips, we observe
RowHammer bit flips in as far as 6 rows from the victim row
(i.e., x = –6), whereas in DDR3 and DDR4 chips, RowHam-
mer bit flips only occur in as far as 2 rows from the victim
row (i.e., x = –2). We believe that this effect could be due
to 1) an increase in DRAM cell density, which leads to cell-
to-cell interference extending farther than a single row, with
RowHammer bit flips occurring in rows increasingly farther
away from the aggressor rows (e.g., 5 rows away) for higher-
density chips, and 2) more shared structures internal to the
DRAM chip, which causes farther (and multiple) rows to be
affected by circuit-level interference.
Observation 6. For a given DRAM manufacturer, chips of

newer DRAM technology nodes can exhibit RowHammer bit
flips 1) in more rows and 2) farther away from the victim row.

Second, we observe that rows containing RowHammer bit
flips that are farther from the victim row have fewer RowHam-
mer bit flips than rows closer to the victim row. Non-victim
rows adjacent to the aggressor rows (x = 2 and x = –2) con-
tain RowHammer bit flips, and these bit flips demonstrate the
effectiveness of a single-sided RowHammer attack as only one
of their adjacent rows are repeatedly accessed. As discussed
earlier (Section 4.3), the single-sided RowHammer attack is
not as effective as the double-sided RowHammer attack, and
therefore we find fewer bit flips in these rows. In rows far-
ther away from the victim row, we attribute the diminishing
number of RowHammer bit flips to the diminishing effects of
cell-to-cell interference with distance.
Observation 7. The number of RowHammer bit flips that

occur in a given row decreases as the distance from the victim
row increases.
Third, we observe that only even-numbered offsets from

the victim row contain RowHammer bit flips in all chips
except LPDDR4-1x chips from Manufacturer B. However,
the rows containing RowHammer bit flips in Manufacturer
B’s LPDDR4-1x chips would be even-numbered offsets if we
translate all rows to physical rows based on our observation
in Section 4.3 (i.e., divide each row number by 2 and round
down). While we are uncertain why we observe RowHammer
bit flips only in physical even-numbered offsets from the

644

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

victim row, we believe that it may be due to the internal
circuitry layout of DRAM rows.
We next study the spatial distribution of RowHammer-

vulnerable DRAM cells in a DRAM array using the same set
of RowHammer bit flips. Figure 7 shows the distribution of
64-bit words containing x RowHammer bit flips across our
tested DRAM chips. We find the proportion of 64-bit words
containing x RowHammer bit flips out of all 64-bit words in
each chip containing any RowHammer bit flip and plot the
distribution as a bar chart with error bars for each x value.

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 6

4-
bi

t w
or

ds
 c

on
ta

ini
ng

 X
 b

it
flip

s

ov

er
 a

ll 6
4-

bi
t w

or
ds

 c
on

ta
ini

ng
 b

it
flip

s

Number of RowHammer bit flips per 64-bit word
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Not Enough
Bit Flips

Not Enough
Data

No Chips

No Chips

DDR3-new
DDR4-old

LPDDR4-1x
LPDDR4-1y

DDR4-new

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure 7: Distribution of the number ofRowHammer bit flips
per 64-bit word for each DRAM type-node configuration.

Observation 8. At a RowHammer bit flip rate of 10–6, a
single 64-bit value can contain up to four RowHammer bit flips.
Because ECC [53, 88, 94, 98] is typically implemented for

DRAM at a 64-bit granularity (e.g., a single-error correcting
code would only protect a 64-bit word if it contains at most
one error), observation 8 indicates that even at a relatively
low bit flip rate of 10–6, a DRAM chip can only be protected
from RowHammer bit flips with a strong ECC code (e.g., 4-bit
error correcting code), which has high hardware overhead.
Observation 9. The distribution of RowHammer bit flip

density per word changes significantly in LPDDR4 chips com-
pared to other DRAM types.

We find DDR3 and DDR4 chips across all manufacturers to
exhibit an exponential decay curve for increasing RowHam-
mer bit flip densities with most words containing only one
RowHammer bit flip. However, LPDDR4 chips across all
manufacturers exhibit a much smaller fraction of words con-
taining a single RowHammer bit flip and significantly larger
fractions of words containing two and three RowHammer
bit flips compared to DDR3 and DDR4 chips. We believe
this change in the bit flip density distribution is due to the
on-die ECC that manufacturers have included in LPDDR4
chips [53,88,94,98], which is a 128-bit single-error correcting
code that corrects and hides most single-bit failures within a
128-bit ECC word using redundant bits (i.e., parity-check bits)
that are hidden from the system.
With the failure rates at which we test, many ECC words

contain several bit flips. This exceeds the ECC’s correction
strength and causes the ECC logic to behave in an undefined
way. The ECC logic may 1) correct one of the bit flips, 2) do
nothing, or 3) introduce an additional bit flip by corrupting
an error-free data bit [98, 117]. On-die ECC makes single-bit
errors rare because 1) any true single-bit error is immediately
corrected and 2) a multi-bit error can only be reduced to a
single-bit error when there are no more than two bit flips
within the data bits and the ECC logic’s undefined action
happens to change the bit flip count to exactly one. In contrast,
there are many more scenarios that yield two or three bit-
flips within the data bits, and a detailed experimental analysis

of how on-die ECC affects DRAM failure rates in LPDDR4
DRAM chips can be found in [98].

5.5. First RowHammer Bit Flips
We next study the vulnerability of each chip to RowHam-

mer. One critical component of vulnerability to the double-
sided RowHammer attack [63] is identifying the weakest cell,
i.e., the DRAM cell that fails with the fewest number of ac-
cesses to physically-adjacent rows. In order to perform this
study, we sweep HC at a fine granularity and record the HC
that results in the first RowHammer bit flip in the chip (HCfirst).
Figure 8 plots the distribution of HCfirst across all tested chips
as box-and-whisker plots.10 The subplots contain the distri-
butions of each tested DRAM type-node configuration for
the different DRAM manufacturers. The x-axis organizes the
distributions by DRAM type-node configuration in order of
age (older on the left to younger on the right). We further
subdivide the subplots for chips of the same DRAM type (e.g.,
DDR3, DDR4, LPDDR4) with vertical lines. Chips of the same
DRAM type are colored with the same color for easier visual
comparison across DRAM manufacturers.

Mfr. A Mfr. B Mfr. C

Ha
m

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

flip
 (H

C fi
rs

t)

No
 B

it
Fl

ip
s

No
 B

it
Fl

ip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K

Figure 8: Number of hammers required to cause the first
RowHammer bit flip (HCfirst) per chip across DRAM type-

node configurations.

Observation 10. Newer chips from a given DRAM man-
ufacturer appear to be more vulnerable to RowHammer bit
flips. This is demonstrated by the clear reduction in HCfirst val-
ues from old to new DRAM generations (e.g., LPDDR4-1x to
LPDDR4-1y in manufacturer A, or DDR4-old to DDR4-new in
manufacturers A and C).
We believe this observation is due to DRAM technology

process scaling wherein both 1) DRAM cell capacitance re-
duces and 2) DRAM cell density increases as technology node
size reduces. Both factors together lead to more interference
between cells and likely faster charge leakage from the DRAM
cell’s smaller capacitors, leading to a higher vulnerability to
RowHammer. We find two exceptions to this trend (i.e., a
general increase in HCfirst from DDR3-old to DDR3-new chips
of manufacturer A and from DDR4-old to DDR4-new chips
of manufacturer B), but we believe these potential anomalies
may be due to our inability to identify explicit manufacturing
dates and correctly categorize these particular chips.

10A box-and-whiskers plot emphasizes the important metrics of a
dataset’s distribution. The box is lower-bounded by the first quartile (i.e., the
median of the first half of the ordered set of data points) and upper-bounded
by the third quartile (i.e., the median of the second half of the ordered set of
data points). The median falls within the box. The inter-quartile range (IQR)
is the distance between the first and third quartiles (i.e., box size). Whiskers
extend an additional 1.5× IQR on either sides of the box. We indicate outliers,
or data points outside of the range of the whiskers, with pluses.

645

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

Observation 11. In LPDDR4-1y chips frommanufacturer A,
there are chips whose weakest cells fail after only 4800 hammers.
This observation has serious implications for the future

as DRAM technology node sizes will continue to reduce and
HCfirst will only get smaller. We discuss these implications
further in Section 6. Table 4 shows the lowest observed HCfirst
value for any chip within a DRAM type-node configuration
(i.e., the minimum values of each distribution in Figure 8).

Table 4: LowestHCfirst values (×1000) across all chips of each

DRAM type-node configuration.

DRAM HCfirst (Hammers until first bit flip) ×1000
type-node Mfr. A Mfr. B Mfr. C

DDR3-old 69.2 157 155
DDR3-new 85 22.4 24
DDR4-old 17.5 30 87
DDR4-new 10 25 40
LPDDR4-1x 43.2 16.8 N/A
LPDDR4-1y 4.8 N/A 9.6

Effects of ECC. The use of error correcting codes (ECC) to
improve the reliability of a DRAM chip is common practice,
with most system-level [9, 21, 31, 60] or on-die [53, 68, 69,
88, 98] ECC mechanisms providing single error correction
capabilities at the granularity of 64- or 128-bit words. We
examine 64-bit ECCs since, for the same correction capability
(e.g., single-error correcting), they are stronger than 128-bit
ECCs. In order to determine the efficacy with which ECC
can mitigate RowHammer effects on real DRAM chips, we
carefully study three metrics across each of our chips: 1)
the lowest HC required to cause the first RowHammer bit
flip (i.e., HCfirst) for a given chip (shown in Figure 8), 2) the
lowest HC required to cause at least two RowHammer bit
flips (i.e., HCsecond) within any 64-bit word, and 3) the lowest
HC required to cause at least three RowHammer bit flips (i.e.,
HCthird) within any 64-bit word. These quantities tell us, for
ECCs of varying strengths (e.g., single-error correction code,
double-error correction code), at which HC values the ECC
can 1) mitigate RowHammer bit flips and 2) no longer reliably
mitigate RowHammer bit flips for that particular chip.
Figure 9 plots as a bar graph the HC (left y-axis) required

to find the first 64-bit word containing one, two, and three
RowHammer bit flips (x-axis) across each DRAM type-node
configuration. The error bars represent the standard deviation
of HC values across all chips tested. On the same figure,
we also plot with red boxplots, the increase in HC (right y-
axis) between the HCs required to find the first 64-bit word
containing one and two RowHammer bit flips, and two and
three RowHammer bit flips. These multipliers indicate how
HCfirst would change in a chip if the chip uses single-error
correcting ECC or moves from a single-error correcting to
a double-error correcting ECC. Note that we 1) leave two
plots (i.e., Mfr. A DDR3-new and Mfr. C DDR4-old) empty
since we are unable to induce enough RowHammer bit flips
to find 64-bit words containing more than one bit flip in the
chips and 2) do not include data from our LPDDR4 chips
because they already include on-die ECC [53, 68, 69, 88, 98],
which obfuscates errors potentially exposed to any other ECC
mechanisms [98].
Observation 12. A single-error correcting code can sig-

nificantly improve HCfirst by up to 2.78× in DDR4-old and
DDR4-new DRAM chips, and 1.65× in DDR3-new DRAM chips.
Observation 13. Moving from a double-error correcting

code to a triple-error correcting code has diminishing returns
in DDR4-old and DDR4-new DRAM chips (as indicated by the
reduction in the HC multiplier) compared to when moving
from a single-error correcting code to a double-error correcting
code. However, using a triple-error correcting code in DDR3-new
DRAM chips continues to further improve the HCfirst and thus
reduce the DRAM chips’ vulnerability to RowHammer.

Mfr. A Mfr. B Mfr. C

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

0k
50k

100k
150k
200k

0k
50k

100k
150k
200k

0k
50k

100k
150k
200k

Ha
m

m
er

 C
ou

nt
 (H

C)
 to

 fi
nd

 th
e

fir
st

64

-b
it

wo
rd

 c
on

ta
ini

ng
 X

 b
it

flip
s

Ham
m

er Count M
ultiplier

D
D

R
3-new

D
D

R
4-o

ld
D

D
R

4-new

Number of RowHammer bit flips in a 64-bit word
1 2 3 1 2 3 1 2 3

Not Enough
Bit Flips

Not Enough
Bit Flips

Figure 9: Hammer Count (left y-axis) required to find the
first 64-bit word containing one, two, and three RowHammer
bit flips. Hammer Count Multiplier (right y-axis) quantifies
the HC difference between every two points on the x-axis (as
a multiplication factor of the left point to the right point).

5.6. Single-Cell RowHammer Bit Flip Probability
We examine how the failure probability of a single

RowHammer bit flip changes as HC increases. We sweep
HC between 25k to 150k with a step size of 5k and hammer
each DRAM row over 20 iterations. For each HC value, we
identify each cell’s bit flip probability (i.e., the number of
times we observe a RowHammer bit flip in that cell out of
all 20 iterations). We then observe how each cell’s bit flip
probability changes as HC increases. We expect that by ex-
acerbating the RowHammer conditions (e.g., increasing the
hammer count), the exacerbated circuit-level interference
effects should result in an increasing RowHammer bit flip
probability for each individual cell. Out of the full set of
bits that we observe any RowHammer bit flips in, Table 5
lists the percentage of cells that have a strictly monotonically
increasing bit flip probability as we increase HC.

Table 5: Percentage of cells with monotonically increasing
RowHammer bit flip probabilities as HC increases.

DRAM
type-node

Cells with monotonically increasing
RowHammer bit flip probabilities (%)

Mfr. A Mfr. B Mfr. C

DDR3-new 97.6 ± 0.2 100 100
DDR4-old 98.4 ± 0.1 100 100
DDR4-new 99.6 ± 0.1 100 100
LPDDR4-1x 50.3 ± 1.2 52.4 ± 1.4 N/A
LPDDR4-1y 47.0 ± 0.8 N/A 54.3 ± 5.7

Observation 14. For DDR3 and DDR4 chips, an overwhelm-
ing majority (i.e., more than 97%) of the cells tested have mono-
tonically increasing RowHammer bit flip probabilities for DDR3
and DDR4 chips.

This observation indicates that exacerbating the RowHam-
mer conditions by increasing HC increases the probability
that a DRAM cell experiences a RowHammer bit flip. How-
ever, we find that the proportion of cells with monotonically
increasing RowHammer bit flip probabilities as HC increases
is around only 50% in the LPDDR4 chips that we test. We
believe that this decrease is due to the addition of on-die ECC
in LPDDR4 chips, which can obscure the probability of ob-
serving a RowHammer bit flip from the system’s perspective
in two ways. First, a RowHammer bit flip at bit X can no
longer be observable from the system’s perspective if another
RowHammer bit flip at bit Y occurs within the same ECC
word as a result of increasing HC, and the error correction
logic corrects the RowHammer bit flip at bit X. Second, the
system may temporarily observe a bit flip at bit X at a specific
HC if the set of real RowHammer bit flips within an ECC
word results in a miscorrection at bit X. Since this bit flip is a
result of the ECC logic misbehaving rather than circuit-level
interference, we do not observe the expected trends for these
transient miscorrected bits.

646

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

6. Implications for Future Systems
Our characterization results have major implications for

continued DRAM technology scaling since DRAM’s increased
vulnerability to RowHammer means that systems employing
future DRAM devices will likely need to handle significantly
elevated failure rates. While prior works propose a wide vari-
ety of RowHammer failure mitigation techniques (described
in Sections 6.1 and 7), these mechanisms will need to manage
increasing failure rates going forward and will likely suffer
from high overhead (as we show in Section 6.2).
While DRAM and system designers currently implement

several RowHammer mitigation mechanisms (e.g., pseudo Tar-
get Row Refresh (pTRR) [51], Target Row Refresh (TRR) [81])11,
the designers make a number of unknown implementation
choices in these RowHammer mitigation mechanisms that
are not discussed in public documentation. Therefore, we
cannot fairly evaluate how their performance overheads scale
as DRAM chips become more vulnerable to RowHammer. In-
stead, we evaluate five state-of-the-art academic proposals
for RowHammer mitigation mechanisms [63, 77, 116, 134] as
well as an ideal refresh-based mitigation mechanism.

We evaluate each RowHammer mitigation mechanism in
terms of two major challenges that they will face going for-
ward as they will need to support DRAM chips more vul-
nerable to RowHammer: design scalability and system per-
formance overhead. We first qualitatively explain and dis-
cuss the five state-of-the-art mitigation mechanisms and how
they can potentially scale to support DRAM chips that are
more vulnerable to RowHammer. We then quantitatively
evaluate their performance overheads in simulation as HCfirst
decreases. In order to show the opportunity for reducing
performance overhead in RowHammer mitigation, we also
implement and study an ideal refresh-based mechanism that
prevents RowHammer by refreshing a DRAM row only im-
mediately before it is about to experience a bit flip.

6.1. RowHammer Mitigation Mechanisms
There is a large body of work (e.g., [3,10,11,15,27,34,44,62,

67, 79, 123, 128, 129]) that proposes software-based RowHam-
mer mitigation mechanisms. Unfortunately, many of these
works have critical weaknesses (e.g., inability to track all
DRAM activations) that make them vulnerable to carefully-
crafted RowHammer attacks, as demonstrated in some fol-
lowup works (e.g., [34]). Therefore, we focus on evaluating
six mechanisms (i.e., five state-of-the-art hardware proposals
and one ideal refresh-based mitigation mechanism), which ad-
dress a strong threatmodel that assumes an attacker can cause
row activations with precise memory location and timing in-
formation. We briefly explain each mitigation mechanism
and how its design scales for DRAM chips with increased
vulnerability to RowHammer (i.e., lower HCfirst values).

Increased Refresh Rate [63]. The original RowHammer
study [63] describes increasing the overall DRAM refresh
rate such that it is impossible to issue enough activations
within one refresh window (i.e., the time between two con-
secutive refresh commands to a single DRAM row) to any
single DRAM row to induce a RowHammer bit flip. The study
notes that this is an undesirable mitigation mechanism due to
its associated performance and energy overheads. In order to
reliably mitigate RowHammer bit flips with this mechanism,
we scale the refresh rate such that the refresh window (i.e.,
tREFW ; the time interval between consecutive refresh com-
mands to a single row) equals the number of hammers until
the first RowHammer bit flip (i.e., HCfirst) multiplied by the
activation latency tRC . Due to the large number of rows that

11Frigo et al. [26] recently demonstrated that these mechanisms do not
prevent all RowHammer bit flips from being exposed to the system, and an
attacker can still take over a system even with these mechanisms in place.

must be refreshed within a refresh window, this mechanism
inherently does not scale to HCfirst values below 32k.
PARA [63]. Every time a row is opened and closed, PARA

(Probabilistic Adjacent RowActivation) refreshes one or more
of the row’s adjacent rows with a low probability p. Due to
PARA’s simple approach, it is possible to easily tune p when
PARA must protect a DRAM chip with a lower HCfirst value.
In our evaluation of PARA, we scale p for different values
of HCfirst such that the bit error rate (BER) does not exceed
1e-15 per hour of continuous hammering.12

ProHIT [116]. ProHIT maintains a history of DRAM ac-
tivations in a set of tables to identify any row that may be
activated HCfirst times. ProHIT manages the tables proba-
bilistically to minimize the overhead of tracking frequently-
activated DRAM rows. ProHIT [116] uses a pair of tables
labeled "Hot" and "Cold" to track the victim rows. When a
row is activated, ProHIT checks whether each adjacent row is
already in either of the tables. If a row is not in either table, it
is inserted into the cold table with a probability pi . If the table
is full, the least recently inserted entry in the cold table is then
evicted with a probability (1 – pe) + pe/(#cold_entries) and the
other entries are evicted with a probability pe/(#cold_entries).
If the row already exists in the cold table, the row is promoted
to the highest-priority entry in the hot table with a proba-
bility (1 – pt) + pt/(#hot_entries) and to other entries with a
probability pt/(#hot_entries). If the row already exists in the
hot table, the entry is upgraded to a higher priority position.
During each refresh command, ProHIT simultaneously re-
freshes the row at the top entry of the hot table, since this
row has likely experienced the most number of activations,
and then removes the entry from the table.

For ProHIT [116] to effectively mitigate RowHammer with
decreasing HCfirst values, the size of the tables and the prob-
abilities for managing the tables (e.g., pi, pe , pt) must be
adjusted. Even though Son et al. show a low-cost mitiga-
tion mechanism for a specific HCfirst value (i.e., 2000), they
do not provide models for appropriately setting these values
for arbitrary HCfirst values and how to do so is not intuitive.
Therefore, we evaluate ProHIT only when HCfirst = 2000.

MRLoc [134]. MRLoc refreshes a victim row using a proba-
bility that is dynamically adjusted based on each row’s access
history. This way, according to memory access locality, the
rows that have been recorded as a victim more recently have
a higher chance of being refreshed. MRLoc uses a queue to
store victim row addresses on each activation. Depending on
the time between two insertions of a given victim row into
the queue, MRLoc adjusts the probability with which it issues
a refresh to the victim row that is present in the queue.
MRLoc’s parameters (the queue size and the parameters

used to calculate the probability of refresh) are tuned for
HCfirst = 2000. You et al. [134] choose the values for these
parameters empirically, and there is no concrete discussion on
how to adjust these parameters as HCfirst changes. Therefore
we evaluate MRLoc for only HCfirst = 2000.

As such, even though we quantitatively evaluate both Pro-
HIT [116] and MRLoc [134] for completeness and they may
seem to have good overhead results at one data point, we are
unable to demonstrate how their overheads scale as DRAM
chips become more vulnerable to RowHammer.
TWiCe [77]. TWiCe tracks the number of times a victim

row’s aggressor rows are activated using a table of counters
and refreshes a victim rowwhen its count is above a threshold
such that RowHammer bit flips cannot occur. TWiCe uses
two counters per entry: 1) a lifetime counter, which tracks
the length of time the entry has been in the table, and 2)
an activation counter, which tracks the number of times an

12We adopt this BER from typical consumer memory reliability tar-
gets [13, 14, 49, 85, 87, 99].

647

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

aggressor row is activated. The key idea is that TWiCe can
use these two counters to determine the rate at which a row
is being hammered and can quickly prune entries that have
a low rate of being hammered. TWiCe also minimizes its
table size based on the observation that the number of rows
that can be activated enough times to induce RowHammer
failures within a refresh window is bound by the DRAM
chip’s vulnerability to RowHammer.
When a row is activated, TWiCe checks whether its adja-

cent rows are already in the table. If so, the activation count
for each row is incremented. Otherwise, new entries are allo-
cated in the table for each row. Whenever a row’s activation
count surpasses a threshold tRH defined as HCfirst/4, TWiCe
refreshes the row. TWiCe also defines a pruning stage that 1)
increments each lifetime counter, 2) checks each row’s ham-
mer rate based on both counters, and 3) prunes entries that
have a lifetime hammer rate lower than a pruning threshold,
which is defined as tRH divided by the number of refresh op-
erations per refresh window (i.e., tRH /(tREFW /tREFI)). TWiCe
performs pruning operations during refresh commands so
that the latency of a pruning operation is hidden behind the
DRAM refresh commands.
If tRH is lower than the number of refresh intervals in a

refresh window (i.e., 8192), a couple of complications arise in
the design. TWiCe either 1) cannot prune its table, resulting
in a very large table size since every row that is accessed at
least once will remain in the table until the end of the refresh
window or 2) requires floating point operations in order to
calculate thresholds for pruning, which would significantly
increase the latency of the pruning stage. Either way, the
pruning stage latency would increase significantly since a
larger table also requires more time to check each entry, and
the latency may no longer be hidden by the refresh command.
As a consequence, TWiCe does not support tRH values

lower than the number of refresh intervals in a refresh win-
dow (∼ 8k in several DRAM standards, e.g., DDR3, DDR4,
LPDDR4). This means that in its current form, we can-
not fairly evaluate TWiCe for HCfirst values below 32k, as
tRH =HCfirst/4. However, we do evaluate an ideal version of
TWiCe (i.e., TWiCe-ideal) for HCfirst values below 32k assum-
ing that TWiCe-ideal solves both issues of the large table size
and the high-latency pruning stage at lower HCfirst values.
Ideal Refresh-based Mitigation Mechanism. We im-

plement an ideal refresh-based mitigation mechanism that
tracks all activations to every row in DRAM and issues a
refresh command to a row only right before it can potentially
experience a RowHammer bit flip (i.e., when a physically-
adjacent row has been activated HCfirst times).

6.2. Evaluation of Viable Mitigation Mechanisms
We first describe our methodology for evaluating the five

state-of-the-art RowHammer mitigation mechanisms (i.e.,
increased refresh rate [63], PARA [63], ProHIT [116], MR-
Loc [134], TWiCe [77]) and the ideal refresh-based mitigation
mechanism.

6.2.1. Evaluation Methodology. We use Ramulator [66,
105], a cycle-accurate DRAM simulator with a simple core
model and a system configuration as listed in Table 6, to imple-
ment and evaluate the RowHammer mitigation mechanisms.
To demonstrate how the performance overhead of each mech-
anism would scale to future devices, we implement, to the
best of our ability, parameterizable methods for scaling the
mitigation mechanisms to DRAM chips with varying degrees
of vulnerability to RowHammer (as described in Section 6.1).
Workloads. We evaluate 48 8-core workload mixes drawn

randomly from the full SPEC CPU2006 benchmark suite [118]
to demonstrate the effects of the RowHammer mitigation
mechanisms on systems during typical use (and not when a
RowHammer attack is being mounted). The set of workloads

Table 6: System configuration for simulations.

Parameter Configuration

Processor 4GHz, 8-core, 4-wide issue, 128-entry instr. window

Last-level Cache 64-Byte cache line, 8-way set-associative, 16MB

Memory Controller 64 read/write request queue, FR-FCFS [103, 136]

Main Memory
DDR4, 1-channel, 1-rank, 4-bank groups, 4-banks
per bank group, 16k rows per bank

exhibit a wide range of memory intensities. The workloads’
MPKI values (i.e., last-level cache misses per kilo-instruction)
range from 10 to 740. This wide range enables us to study the
effects of RowHammer mitigation on workloads with widely
varying degrees of memory intensity. We note that there
could be other workloads with which mitigation mechanisms
exhibit higher performance overheads, but we did not try
to maximize the overhead experienced by workloads by bi-
asing the workload construction in any way. We simulate
each workload until each core executes at least 200 million
instructions. For all configurations, we initially warm up the
caches by fast-forwarding 100 million instructions.
Metrics. Because state-of-the-art RowHammer mitigation

mechanisms rely on additional DRAM refresh operations to
prevent RowHammer, we use two different metrics to evalu-
ate their impact on system performance. First, we measure
DRAM bandwidth overhead, which quantifies the fraction of
the total systemDRAM bandwidth consumption coming from
the RowHammer mitigation mechanism. Second, we measure
overall workload performance using the weighted speedup
metric [23, 115], which effectively measures job throughput
for multi-core workloads [23]. We normalize the weighted
speedup to its baseline value, which we denote as 100%, and
find that when using RowHammer mitigation mechanisms,
most values appear below the baseline. Therefore, for clar-
ity, we refer to normalized weighted speedup as normalized
system performance in our evaluations.
6.2.2. Evaluation of Mitigation Mechanisms. Figure 10
shows the results of our evaluation of the RowHammer miti-
gation mechanisms (as described in Section 6.1) for chips of
varying degrees of RowHammer vulnerability (i.e., 200k ≥
HCfirst ≥ 64) for our two metrics: 1) DRAM bandwidth over-
head in Figure 10a and 2) normalized system performance in
Figure 10b. Each data point shows the average value across
48 workloads with minimum and maximum values drawn as
error bars.
For each DRAM type-node configuration that we charac-

terize, we plot the minimum HCfirst value found across chips
within the configuration (from Table 4) as a vertical line to
show how each RowHammer mitigation mechanism would
impact the overall system when using a DRAM chip of a
particular configuration. Above the figures (sharing the x-
axis with Figure 10), we draw horizontal lines representing
the ranges of HCfirst values that we observe for every tested
DRAM chip per DRAM type-node configuration across manu-
facturers. We color the ranges according to DRAM type-node
configuration colors in the figure, and indicate the average
value with a gray point. Note that these lines directly corre-
spond to the box-and-whisker plot ranges in Figure 8.
We make five key observations from this figure. First,

DRAM bandwidth overhead is highly correlated with nor-
malized system performance, as DRAM bandwidth consump-
tion is the main source of system interference caused by
RowHammer mitigation mechanisms. We note that several
points (i.e., ProHIT, MRLoc, and TWiCe and Ideal evaluated
at higher HCfirst values) are not visible in Figure 10a since
we are plotting an inverted log graph and these points are
very close to zero. Second, in the latest DRAM chips (i.e.,
the LPDDR4-1y chips), only PARA, ProHIT, and MRLoc are
viable options for mitigating RowHammer bit flips with rea-
sonable average normalized system performance: 92%, 100%,

648

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

D
R

A
M

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D

R
3-

o
ld

D
D

R
4-

o
ld

D
D

R
4-

ne
w

LP
D

D
R

4-
1x

LP
D

D
R

4-
1y

D
D

R
3-

ne
w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D

R
3-

o
ld

D
D

R
4-

o
ld

D
D

R
4-

ne
w

LP
D

D
R

4-
1x

LP
D

D
R

4-
1y

D
D

R
3-

ne
w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Figure 10: Effect of RowHammer mitigation mechanisms on
a) DRAM bandwidth overhead (note the inverted log-scale
y-axis) and b) system performance, as DRAM chips become
more vulnerable to RowHammer (from left to right).

and 100%, respectively. Increased Refresh Rate and TWiCe
do not scale to such degrees of RowHammer vulnerability
(i.e., HCfirst = 4.8k), as discussed in Section 6.1. Third, only
PARA’s design scales to low HCfirst values that we may see
in future DRAM chips, but has very low average normalized
system performance (e.g., 72% when HCfirst = 1024; 47% when
HCfirst = 256; 20% when HCfirst = 128). While TWiCe-ideal
has higher normalized system performance over PARA (e.g.,
98% when HCfirst = 1024; 86% when HCfirst = 256; 73% when
HCfirst = 128), there are significant practical limitations in
enabling TWiCe-ideal for such low HCfirst values (discussed
in Section 6.1). Fourth, ProHIT and MRLoc both exhibit high
normalized system performance at their single data point (i.e.,
95% and 100%, respectively when HCfirst = 2000), but these
works do not provide models for scaling their mechanisms
to lower HCfirst values and how to do so is not intuitive (as
described in Section 6.1). Fifth, the ideal refresh-based mitiga-
tion mechanism is significantly and increasingly better than
any existing mechanism as HCfirst reduces below 1024. This
indicates that there is still significant opportunity for develop-
ing a refresh-based RowHammer mitigation mechanism with
low performance overhead that scales to low HCfirst values.
However, the ideal mechanism affects system performance
at very low HCfirst values (e.g., 99.96% when HCfirst = 1024;
97.91% when HCfirst = 256; 93.53% when HCfirst = 128), indi-
cating the potential need for a better approach to solving
RowHammer in future ultra-dense DRAM chips.
We conclude that while existing mitigation mechanisms

may exhibit reasonably small performance overheads for mit-
igating RowHammer bit flips in modern DRAM chips, their
overheads do not scale well in future DRAM chips that will
likely exhibit higher vulnerability to RowHammer. Thus,
we need new mechanisms and approaches to RowHammer
mitigation that will scale to DRAM chips that are highly vul-
nerable to RowHammer bit flips.

6.3. RowHammer Mitigation Going Forward
DRAM manufacturers continue to adopt smaller technol-

ogy nodes to improve DRAM storage density and are fore-
casted to reach 1z and 1a technology nodes within the next
couple of years [120]. Unfortunately, our findings show that
future DRAM chips will likely be increasingly vulnerable to

RowHammer. This means that, to maintain market competi-
tiveness without suffering factory yield loss, manufacturers
will need to develop effective RowHammer mitigations for
coping with increasingly vulnerable DRAM chips.

6.3.1. Future Directions in RowHammer Mitigation.
RowHammer mitigation mechanisms have been proposed
across the computing stack ranging from circuit-level mecha-
nisms built into the DRAM chip itself to system-level mecha-
nisms that are agnostic to the particular DRAM chip that the
system uses. Of these solutions, our evaluations in Section 6.1
show that, while the ideal refresh-based RowHammer mitiga-
tion mechanism, which inserts the minimum possible num-
ber of additional refreshes to prevent RowHammer bit flips,
scales reasonably well to very low HCfirst values (e.g., only 6%
performance loss when HCfirst is 128), existing RowHammer
mitigation mechanisms either cannot scale or cause severe
system performance penalties when they scale.
To develop a scalable and low-overhead mechanism that

can prevent RowHammer bit flips in DRAM chips with a high
degree of RowHammer vulnerability (i.e., with a low HCfirst
value), we believe it is essential to explore all possible avenues
for RowHammer mitigation. Going forward, we identify two
promising research directions that can potentially lead to new
RowHammer solutions that can reach or exceed the scalability
of the ideal refresh-based mitigation mechanism: (1) DRAM-
system cooperation and (2) profile-guided mechanisms. The
remainder of this section briefly discusses our vision for each
of these directions.
DRAM-System Cooperation. Considering either DRAM-
based or system-level mechanisms alone ignores the potential
benefits of addressing the RowHammer vulnerability from
both perspectives together. While the root causes of RowHam-
mer bit flips lie within DRAM, their negative effects are ob-
served at the system-level. Prior work [89, 93] stresses the
importance of tackling these challenges at all levels of the
stack, and we believe that a holistic solution can achieve a
high degree of protection at relatively low cost compared to
solutions contained within either domain alone.
Profile-GuidedMechanisms. The ability to accurately pro-
file for RowHammer-susceptible DRAM cells or memory re-
gions can provide a powerful substrate for building targeted
RowHammer solutions that efficiently mitigate RowHammer
bit flips at low cost. Knowing (or effectively predicting) the lo-
cations of bit flips before they occur in practice could lead to a
large reduction in RowHammer mitigation overhead, provid-
ing new information that no known RowHammer mitigation
mechanism exploits today. For example, within the scope
of known RowHammer mitigation solutions, increasing the
refresh rate can be made far cheaper by only increasing the
refresh rate for known-vulnerable DRAM rows. Similarly,
ECC or DRAM access counters can be used only for known-
vulnerable cells, and even a software-based mechanism can
be adapted to target only known-vulnerable rows (e.g., by
disabling them or remapping them to reliable memory).

Unfortunately, there exists no such effective RowHammer
error profiling methodology today. Our characterization in
this work essentially follows the naïve approach of individu-
ally testing each row by attempting to induce the worst-case
testing conditions (e.g., HC, data pattern, ambient tempera-
ture etc.). However, this approach is extremely time consum-
ing due to having to test each row individually (potentially
multiple times with various testing conditions). Even for a
relatively small DRAM module of 8GB with 8KB rows, ham-
mering each row only once for only one refresh window of
64ms requires over 17 hours of continuous testing, which
means that the naïve approach to profiling is infeasible for a
general mechanism that may be used in a production environ-
ment or for online operation. We believe that developing a
fast and effective RowHammer profiling mechanism is a key

649

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

research challenge, and we hope that future work will use
the observations made in this study and other RowHammer
characterization studies to find a solution.

7. Related Work
Although many works propose RowHammer attacks and

mitigation mechanisms, only three works [63, 96, 97] provide
detailed failure-characterization studies that examine how
RowHammer failures manifest in real DRAM chips. However,
none of these studies show how the number of activations
to induce RowHammer bit flips is changing across modern
DRAM types and generations, and the original RowHammer
study [63] is already six years old and limited to DDR3 DRAM
chips only. This section highlights the most closely related
prior works that study the RowHammer vulnerability of older
generation chips or examine other aspects of RowHammer.
Real Chip Studies. Three key studies (i.e., the pioneering

RowHammer study [63] and two subsequent studies [96, 97])
perform extensive experimental RowHammer failure charac-
terization using older DDR3 devices. However, these studies
are restricted to only DDR3 devices and do not provide a
scaling study of hammer counts across DRAM types and gen-
erations. In contrast, our work provides the first rigorous
experimental study showing how RowHammer characteris-
tics scale across different DRAM generations and how DRAM
chips designed with newer technology nodes are increas-
ingly vulnerable to RowHammer. Our work complements
and furthers the analyses provided in prior studies.
Simulation Studies. Yang et al. [133] use device-level

simulations to explore the root cause of the RowHammer vul-
nerability. While their analysis identifies a likely explanation
for the failure mechanism responsible for RowHammer, they
do not present experimental data taken from real devices to
support their conclusions.
RowHammer Mitigation Mechanisms. Many prior

works [2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 24, 25, 30, 33, 38, 41, 44,
57, 62, 63, 67, 77, 78, 79, 116, 123, 127, 128, 129, 134] propose
RowHammer mitigation techniques. Additionally, several
patents for RowHammer prevention mechanisms have been
filed [4, 5, 6, 7, 8, 32]. However, these works do not analyze
how their solutions will scale to future DRAM generations
and do not provide detailed failure characterization data from
modern DRAM devices. Similar and other related works on
RowHammer can be found in a recent retrospective [92].

8. Conclusion
We provide the first rigorous experimental RowHammer

failure characterization study that demonstrates how the
RowHammer vulnerability of modern DDR3, DDR4, and
LPDDR4 DRAM chips scales across DRAM generations and
technology nodes. Using experimental data from 1580 real
DRAM chips produced by the three major DRAM manufac-
turers, we show that modern DRAM chips that use smaller
process technology node sizes are significantly more vul-
nerable to RowHammer than older chips. Using simulation,
we show that existing RowHammer mitigation mechanisms
1) suffer from prohibitively large performance overheads at
projected future hammer counts and 2) are still far from an
ideal selective-refresh-based RowHammer mitigation mecha-
nism. Based on our study, we motivate the need for a scalable
and low-overhead solution to RowHammer and provide two
promising research directions to this end. We hope that the
results of our study will inspire and aid future work to de-
velop efficient solutions for the RowHammer bit flip rates we
are likely to see in DRAM chips in the near future.

Acknowledgments
We thank the anonymous reviewers of ISCA 2020 for feed-

back and the SAFARI group members for feedback and the
stimulating intellectual environment they provide. We also
thank our industrial partners for their generous donations.

References
[1] B. Aichinger, “DDR Memory Errors Caused by Row Hammer,” in HPEC, 2015.
[2] Apple Inc., “About the Security Content of Mac EFI Security Update 2015-001,”

https://support.apple.com/en-us/HT204934, 2015.
[3] Z. B. Aweke et al., “ANVIL: Software-Based Protection Against Next-Generation

Rowhammer Attacks,” in ASPLOS, 2016.
[4] K. Bains et al., “Row Hammer Refresh Command,” 2015, US Patent 9,117,544.
[5] K. S. Bains et al., “Row Hammer Monitoring Based on Stored Row Hammer

Threshold Value,” 2015, US Patent 9,032,141.
[6] K. S. Bains et al., “Distributed RowHammer Tracking,” 2016, US Patent 9,299,400.
[7] K. S. Bains et al., “Row Hammer Refresh Command,” US Patent 9,236,110, 2016.
[8] K. S. Bains et al., “Method, Apparatus and System for Providing a Memory Re-

fresh,” 2015, US Patent 9,030,903.
[9] R. Balasubramonian, “Innovations in the Memory System,” Synthesis Lectures on

Computer Architecture, 2019.
[10] C. Bock et al., “RIP-RH: Preventing Rowhammer-Based Inter-Process Attacks,”

in ASIA-CCS, 2019.
[11] F. Brasser et al., “Can’t Touch This: Practical and Generic Software-only De-

fenses Against RowHammer Attacks,” USENIX Security, 2017.
[12] L. Bu et al., “SRASA: A Generalized Theoretical Framework for Security and

Reliability Analysis in Computing Systems,” HaSS, 2018.
[13] Y. Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Char-

acterization, and Analysis,” in DATE, 2012.
[14] Y. Cai et al., “Flash Memory SSD Errors, Mitigation, and Recovery,” in Proc. IEEE,

2017.
[15] A. Chakraborty et al., “Deep Learning Based Diagnostics for Rowhammer Pro-

tection of DRAM Chips,” in ATS, 2019.
[16] K. K. Chang, “Understanding and Improving Latency of DRAM-Based Memory

Systems,” Ph.D. dissertation, Carnegie Mellon University, 2017.
[17] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:

Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS,
2016.

[18] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-
Subarray Data Movement in DRAM,” in HPCA, 2016.

[19] K. K. Chang et al., “Understanding Reduced-Voltage Operation inModern DRAM
Devices: Experimental Characterization, Analysis, andMechanisms,” in SIGMET-
RICS, 2017.

[20] L. Cojocar et al., “Are We Susceptible to Rowhammer? An End-to-End Method-
ology for Cloud Providers,” SP, 2020.

[21] L. Cojocar et al., “Exploiting Correcting Codes: On the Effectiveness of ECC
Memory Against RowHammer Attacks,” in SP, 2019.

[22] R. H. Dennard, “Field-Effect Transistor Memory,” 1968, US Patent 3,387,286.
[23] S. Eyerman et al., “System-level Performance Metrics for Multiprogram Work-

loads,” in IEEE Micro, 2008.
[24] D. E. Fisch et al., “DRAM Adjacent Row Disturb Mitigation,” 2017, US Patent

9,812,185.
[25] T. Fridley et al., “Mitigations Available for the DRAM Row Hammer Vulner-

ability,” http://blogs.cisco.com/security/mitigations-available-for-the-dram-row-
hammer-vulnerability, 2015.

[26] P. Frigo et al., “TRRespass: Exploiting the Many Sides of Target Row Refresh,” in
SP, 2020.

[27] M. Ghasempour et al., “ARMOR: A Run-Time Memory Hot-Row Detector,” 2015.
[28] S. Ghose et al., “Demystifying Complex Workload-DRAM Interactions: An Ex-

perimental Study,” SIGMETRICS, 2019.
[29] S. Ghose et al., “What Your DRAM Power Models are not Telling You: Lessons

from a Detailed Experimental Study,” SIGMETRICS, 2018.
[30] H. Gomez et al., “DRAM Row-Hammer Attack Reduction using Dummy Cells,”

in NORCAS, 2016.
[31] S.-L. Gong et al., “Duo: Exposing on-chip Redundancy to Rank-level ECC for

High Reliability,” in HPCA, 2018.
[32] Z. Greenfield et al., “Row Hammer Condition Monitoring,” 2015, US Patent

8,938,573.
[33] Z. Greenfield et al., “Method, Apparatus and System for Determining A Count

of Accesses to A Row of Memory,” US Patent App. 13/626,479, 2014.
[34] D. Gruss et al., “Another Flip in the Wall of RowHammer Defenses,” in SP, 2018.
[35] D. Gruss et al., “Rowhammer.js: A Remote Software-Induced Fault Attack in

Javascript,” in CoRR, 2016.
[36] J. A. Halderman et al., “Lest we Remember: Cold-Boot Attacks on Encryption

Keys,” USENIX Security, 2008.
[37] T. Hamamoto et al., “On the Retention Time Distribution of Dynamic Random

Access Memory (DRAM),” in ED, 1998.
[38] H. Hassan et al., “CROW: A Low-Cost Substrate for Improving DRAM Perfor-

mance, Energy Efficiency, and Reliability,” in ISCA, 2019.
[39] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting Row

Access Locality,” in HPCA, 2016.
[40] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure

for Enabling Experimental DRAM Studies,” in HPCA, 2017.
[41] Hewlett-Packard Enterprise, “HPMoonshot Component Pack Version 2015.05.0,”

http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/
component-pack/index.aspx, 2015.

[42] S. Hong, “Memory Technology Trend and Future Challenges,” in IEDM, 2010.
[43] Intel Corporation, “CannonLake Intel Firmware Support Package (FSP) Inte-

gration Guide,” https://usermanual.wiki/Pdf/CannonLakeFSPIntegrationGuide.
58784693.pdf, 2017.

[44] G. Irazoqui et al., “MASCAT: Stopping Microarchitectural Attacks Before Execu-
tion,” IACR Cryptology ePrint Archive, 2016.

[45] JEDEC, “Double Data Rate 3 (DDR3) SDRAM Specification,” 2012.
[46] JEDEC, “Double Data Rate 4 (DDR4) SDRAM Standard,” 2012.

650

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

[47] JEDEC, “Low Power Double Data Rate 3 (LPDDR3) SDRAM Specification,” 2012.
[48] JEDEC, “Low Power Double Data Rate 4 (LPDDR4) SDRAM Specification,” 2014.
[49] JEDEC Solid State Technology Association, “Failure Mechanisms andModels for

Semiconductor Devices,” JEDEC Publication JEP122G, 2011.
[50] S. Ji et al., “Pinpoint Rowhammer: Suppressing Unwanted Bit Flips on Rowham-

mer Attacks,” in ASIACCS, 2019.
[51] M. Kaczmarski, “Thoughts on Intel Xeon e5–2600 v2 Product Family Perfor-

mance Optimisation–Component Selection Guidelines,” 2014.
[52] I. Kang et al., “CAT-TWO: Counter-Based Adaptive Tree, Time Window Opti-

mized for DRAM Row-Hammer Prevention,” IEEE Access, 2020.
[53] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance DRAM Pro-

cess Scaling,” in The Memory Forum, 2014.
[54] S. Khan et al., “The Efficacy of Error Mitigation Techniques for DRAM Retention

Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.
[55] S. Khan et al., “PARBOR: An Efficient System-Level Technique to Detect Data-

Dependent Failures in DRAM,” in DSN, 2016.
[56] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by

Exploiting Current Memory Content,” in MICRO, 2017.
[57] D.-H. Kim et al., “Architectural Support for Mitigating Row Hammering in

DRAM Memories,” IEEE CAL, 2014.
[58] J. S. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate True

Random Numbers with Low Latency and High Throughput,” in HPCA, 2019.
[59] J. S. Kim et al., “Revisiting RowHammer: An Experimental Analysis of Modern

DRAM Devices and Mitigation Techniques,” in arXiv, 2020.
[60] J. Kim et al., “Bamboo ECC: Strong, Safe, and Flexible Codes for Reliable Com-

puter Memory,” in HPCA, 2015.
[61] K. Kim et al., “A New Investigation of Data Retention Time in Truly Nanoscaled

DRAMs,” in EDL, 2009.
[62] M. Kim et al., “An Effective DRAM Address Remapping for Mitigating Rowham-

mer Errors,” TC, 2019.
[63] Y. Kim et al., “Flipping Bits in MemoryWithout Accessing Them: An Experimen-

tal Study of DRAM Disturbance Errors,” in ISCA, 2014.
[64] Y. Kim et al., “Rowhammer: Reliability Analysis and Security Implications,”

arXiv, 2016.
[65] Y. Kim et al., “A Case for Exploiting Subarray-level Parallelism (SALP) in DRAM,”

in ISCA, 2012.
[66] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” in CAL, 2016.
[67] R. K. Konoth et al., “ZebRAM: Comprehensive and Compatible Software Protec-

tion Against Rowhammer Attacks,” in OSDI, 2018.
[68] N. Kwak et al., “A 4.8 Gb/s/pin 2Gb LPDDR4 SDRAM with Sub-100μA Self-

Refresh Current for IoT Applications,” in ISSCC, 2017.
[69] H. Kwon et al., “An Extremely Low-Standby-Power 3.733 Gb/s/pin 2Gb LPDDR4

SDRAM for Wearable Devices,” in ISSCC, 2017.
[70] A. Kwong et al., “RAMBleed: Reading Bits in MemoryWithout Accessing Them,”

in SP, 2020.
[71] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the

Common-Case,” in HPCA, 2015.
[72] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,”

Ph.D. dissertation, Carnegie Mellon University, 2016.
[73] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory

Bandwidth at Low Cost,” in TACO, 2016.
[74] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Char-

acterization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS,
2017.

[75] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Ar-
chitecture,” in HPCA, 2013.

[76] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic
by Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[77] E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window
Counters,” in ISCA, 2019.

[78] Lenovo, “Row Hammer Privilege Escalation,” https://support.lenovo.com/us/en/
product_security/row_hammer, 2015.

[79] C. Li et al., “Detecting Malicious Attacks Exploiting Hardware Vulnerabilities
Using Performance Counters,” in COMPSAC, 2019.

[80] Y. Li et al., “DRAM Yield Analysis and Optimization by a Statistical Design Ap-
proach,” in CSI, 2011.

[81] J. Lin et al., “HandlingMaximumActivation Count Limit and Target RowRefresh
in DDR4 SDRAM,” 2017, US Patent 9,589,606.

[82] M. Lipp et al., “Nethammer: Inducing RowHammer Faults Through Network
Requests,” arXiv, 2018.

[83] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern
DRAMDevices: Implications for Retention Time ProfilingMechanisms,” in ISCA,
2013.

[84] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
[85] Y. Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling

for Modern MLC NAND Flash Memory,” in JSAC, 2016.
[86] J. A. Mandelman et al., “Challenges and Future Directions for the Scaling of Dy-

namic Random-access Memory (DRAM),” in IBM JRD, 2002.
[87] R. Micheloni et al., “Apparatus and Method Based on LDPC Codes for Adjusting

A Correctable Raw Bit Error Rate Limit in A Memory System,” 2015, US Patent
9,092,353.

[88] Micron Technology inc., “ECC Brings Reliability and Power Efficiency to Mobile
Devices,” Micron Technology inc., Tech. Rep., 2017.

[89] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[90] O. Mutlu, “The RowHammer Problem and Other IssuesWemay Face as Memory

Becomes Denser,” in DATE, 2017.
[91] O. Mutlu, “RowHammer and Beyond,” in International Workshop on Constructive

Side-Channel Analysis and Secure Design, 2019.
[92] O. Mutlu et al., “RowHammer: A Retrospective,” TCAD, 2019.

[93] O. Mutlu et al., “Research Problems and Opportunities in Memory Systems,” in
SUPERFRI, 2014.

[94] T.-Y. Oh et al., “A 3.2Gbps/pin 8Gbit 1.0V LPDDR4 SDRAMwith Integrated ECC
Engine for Sub-1V DRAM Core Operation,” JSSC, vol. 50, 2015.

[95] Omron, “NY-series Industrial Box PC - Hardware User’s Man-
ual,” https://assets.omron.eu/downloads/manual/en/v6/w553_ny-
series_industrial_box_pc_users_manual_en.pdf, 2019.

[96] K. Park et al., “Experiments and Root Cause Analysis for Active-Precharge Ham-
mering Fault in DDR3 SDRAM under 3× nm Technology,” MR, 2016.

[97] K. Park et al., “Statistical Distributions of Row-Hammering Induced Failures in
DDR3 Components,” MR, 2016.

[98] M. Patel et al., “Understanding andModelingOn-Die Error Correction inModern
DRAM: An Experimental Study Using Real Devices,” in DSN, 2019.

[99] M. Patel et al., “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions,” in ISCA, 2017.

[100] R. Qiao et al., “A New Approach for RowHammer Attacks,” in HOST, 2016.
[101] M. K. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh

for DRAM Systems,” in DSN, 2015.
[102] K. Razavi et al., “Flip Feng Shui: Hammering a Needle in the Software Stack,” in

USENIX Security, 2016.
[103] S. Rixner et al., “Memory Access Scheduling,” in ISCA, 2000.
[104] S.-W. Ryu et al., “Overcoming the Reliability Limitation in the Ultimately Scaled

DRAM using Silicon Migration Technique by Hydrogen Annealing,” in IEDM,
2017.

[105] SAFARI Research Group, “Ramulator Source Code,” https://github.com/CMU-
SAFARI/ramulator.

[106] SAFARI Research Group, “SoftMC Source Code,” https://github.com/
CMU-SAFARI/SoftMC.

[107] K. Saino et al., “Impact of Gate-induced Drain Leakage Current on the Tail Dis-
tribution of DRAM Data Retention Time,” in IEDM, 2000.

[108] M. Seaborn et al., “Exploiting the DRAM RowHammer Bug to Gain Kernel Priv-
ileges,” Black Hat, 2015.

[109] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly
Efficient Memory Systems,” Ph.D. dissertation, Carnegie Mellon University, 2016.

[110] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data
Copy and Initialization,” in MICRO, 2013.

[111] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” in MICRO, 2017.

[112] V. Seshadri et al., “In-DRAM Bulk Bitwise Execution Engine,” Advances in Com-
puters, 2020.

[113] S. M. Seyedzadeh et al., “Mitigating Wordline Crosstalk Using Adaptive Trees of
Counters,” in ISCA, 2018.

[114] S. M. Seyedzadeh et al., “Counter-based Tree Structure for Row Hammering Mit-
igation in DRAM,” CAL, 2017.

[115] A. Snavely et al., “Symbiotic Jobscheduling for a Simultaneous Mutlithreading
Processor,” in ASPLOS, 2000.

[116] M. Son et al., “Making DRAM Stronger Against Row Hammering,” in DAC, 2017.
[117] Y. H. Son et al., “CiDRA: A Cache-Inspired DRAM Resilience Architecture,” in

HPCA, 2015.
[118] Standard Performance Evaluation Corp., “SPEC CPU@2006,” 2006,

http://www.spec.org/cpu2006.
[119] A. Tatar et al., “Defeating Software Mitigations Against Rowhammer: A Surgical

Precision Hammer,” in RAID, 2018.
[120] Tech Insights, “DRAM Technology/Products Roadmap,” 2019.
[121] TQ-Systems, “TQMx80UC User’s Manual,” https://www.tq-group.com/

filedownloads/files/products/embedded/manuals/x86/embedded-modul/
COM-Express-Compact/TQMx80UC/TQMx80UC.UM.0102.pdf, 2020.

[122] V. Van Der Veen et al., “Drammer: Deterministic Rowhammer Attacks onMobile
Platforms,” in CCS, 2016.

[123] V. van der Veen et al., “GuardION: Practical Mitigation of DMA-Based Rowham-
mer Attacks on ARM,” in DIMVA, 2018.

[124] R. K. Venkatesan et al., “Retention-Aware Placement in DRAM (RAPID): Soft-
ware Methods for Quasi-Non-Volatile DRAM,” in HPCA, 2006.

[125] VersaLogic Corporation, “Blackbird BIOS Reference Manual,” https:
//www.versalogic.com/wp-content/themes/vsl-new/assets/pdf/manuals/
MEPU44624562BRM.pdf, 2019.

[126] T. Vogelsang, “Understanding the Energy Consumption of Dynamic RandomAc-
cess Memories,” in MICRO, 2010.

[127] Y.Wang et al., “Detect DRAMDisturbance Error by Using Disturbance Bin Coun-
ters,” CAL, 2019.

[128] Y. Wang et al., “Reinforce Memory Error Protection by Breaking DRAM Distur-
bance Correlation Within ECC Words,” in ICCD, 2019.

[129] X.-C. Wu et al., “Protecting Page Tables from RowHammer Attacks using Mono-
tonic Pointers in DRAM True-Cells,” in ASPLOS, 2019.

[130] Y. Xiao et al., “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation,” in USENIX Security, 2016.

[131] Xilinx, “ML605 Hardware User Guide,” https://www.xilinx.com/support/
documentation/boards_and_kits/ug534.pdf.

[132] Xilinx, “Virtex UltraScale FPGAs,” https://www.xilinx.com/products/
silicon-devices/fpga/virtex-ultrascale.html.

[133] T. Yang et al., “Trap-Assisted DRAM Row Hammer Effect,” EDL, 2019.
[134] J. M. You et al., “MRLoc: Mitigating Row-Hammering Based on Memory Local-

ity,” in DAC, 2019.
[135] T. Zhang et al., “Half-DRAM: A High-Bandwidth and Low-Power DRAM Archi-

tecture from the Rethinking of Fine-Grained Activation,” in ISCA, 2014.
[136] W. K. Zuravleff et al., “Controller for a Synchronous DRAM that Maximizes

Throughput by Allowing Memory Requests and Commands to be Issued Out
of Order,” 1997, US Patent 5,630,096.

651

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:36:43 UTC from IEEE Xplore. Restrictions apply.

