
FLIN: Enabling Fairness and Enhancing Performance
in Modern NVMe Solid State Drives

Arash Tavakkol† Mohammad Sadrosadati† Saugata Ghose‡ Jeremie S. Kim‡† Yixin Luo‡
Yaohua Wang†§ Nika Mansouri Ghiasi† Lois Orosa†∗ Juan Gómez-Luna† Onur Mutlu†‡

†ETH Zürich ‡Carnegie Mellon University §NUDT ∗Unicamp

Modern solid-state drives (SSDs) use new host–interface pro-
tocols, such as NVMe, to provide applications with fast access
to storage. These new protocols make use of a concept known
as the multi-queue SSD (MQ-SSD), where the SSD has direct
access to the application-level I/O request queues. This removes
most of the OS software stack that was used in older protocols
to control how and when the I/O requests were dispatched to
storage devices. Unfortunately, while the elimination of the OS
software stack leads to a significant performance improvement,
we show in this paper that it introduces a new problem: unfair-
ness. This is because the elimination of the OS software stack
eliminates the mechanisms that were used to provide fairness
among applications in older SSDs.

To study application-level unfairness, we perform experiments
using four real state-of-the-art MQ-SSDs. We demonstrate that
the lack of fair scheduling mechanisms leads to high unfairness
among concurrently-executing applications due to the interfer-
ence among them. For instance, when one of these applications
issues manymore I/O requests than others, the other applications
are slowed down significantly. We perform a comprehensive
analysis of interference in real MQ-SSDs, and find four major
interference sources: (1) the intensity of requests sent by each
application, (2) differences in request access patterns, (3) the
ratio of reads to writes, and (4) garbage collection.

To alleviate unfairness in MQ-SSDs, we propose the Flash-
Level INterference-aware scheduler (FLIN). FLIN is a lightweight
I/O request scheduling mechanism that provides fairness among
requests from different applications. FLIN uses a three-stage
scheduling algorithm that protects against all four major sources
of interference, while respecting the application-level priorities
assigned by the host. FLIN is implemented fully within the
SSD controller firmware, requiring no new hardware, and has
negligible (<0.06%) storage cost. Compared to a state-of-the-art
I/O scheduler, FLIN improves the fairness and performance of a
wide range of enterprise and datacenter storage workloads, with
an average improvement of 70% and 47%, respectively.

1. Introduction

Solid-state drives (SSDs) are widely used as a storage
medium today due to their high throughput, low response
time, and low power consumption compared to conventional
hard disk drives (HDDs). As more SSDs are deployed in data-
centers and enterprise platforms, there has been a continued
need to improve SSD performance. One area where SSD man-
ufacturers have innovated on SSD performance is the host–
interface protocol, which coordinates communication between
applications and the SSD. SSDs initially adopted existing host–
interface protocols (e.g., SATA [88]) that were originally de-
signed for lower-performance HDDs. As the performance of
the underlying storage technology (e.g., NAND flash memory)
used by the SSD increased, these host–interface protocols
became a significant performance bottleneck [114], mainly
because these protocols rely on the OS to manage I/O requests
and data transfers between the host system and the SSD.

To overcome this bottleneck, modern enterprise SSDs (e.g.,
[30–33,65,66,87,103,104,110,111]) use new high-performance
protocols, such as the Non-Volatile Memory Express (NVMe)
protocol [21, 83]. These new protocols make use of the multi-
queue SSD (MQ-SSD) [8,48,101] concept, where multiple host-
side I/O request queues (in software) are directly exposed to
the SSD controller. There are two benefits to directly expos-
ing the request queues to the SSD controller: (1) there is no
longer any need for the OS software stack to manage the I/O
requests; and (2) the SSD can make more effective I/O request
scheduling decisions than the OS, since the SSD knows ex-
actly which of its internal resources are available or are busy
serving other requests. Thus, the protocols eliminate the OS
software stack, enabling MQ-SSDs to provide significantly
higher performance than traditional SSDs [101, 114].

Unfortunately, eliminating the OS software stack also elim-
inates critical mechanisms that were previously implemented
as part of the stack, such as fairness control [6, 8, 35, 55, 56, 84,
89, 106, 118]. Fairness control mechanisms work to equalize
the effects of interference across applications when multiple
applications concurrently access a shared device. Fairness is
a critical requirement in multiprogrammed computers and
multi-tenant cloud environments, where multiple I/O flows
(i.e., series of I/O requests) from different applications concur-
rently access a single, shared SSD [36, 43, 84, 91, 94, 101].
For older host–interface protocols, the OS software stack

provides fairness by limiting the number of requests that each
application can dispatch from the host to the SSD. Since fair-
ness was handled by the OS software stack, the vast majority
of state-of-the-art SSD I/O request schedulers did not con-
sider request fairness [20, 36, 37, 40, 77, 90, 112]. Surprisingly,
even though new host–interface protocols, such as NVMe, do
not use the OS software stack, modern MQ-SSDs still do not
contain any fairness mechanisms. To demonstrate this, we
perform experiments using four real state-of-the-art enter-
prise MQ-SSDs. We make two major findings. First, when two
applications share the same SSD, one of the applications typi-
cally slows down (i.e., it takes more time to execute compared
to if it were accessing the SSD alone) significantly. When we
run a representative workload on our four SSDs, we observe
that such slowdowns range from 2x to 106x. Second, with the
removal of the fairness control mechanisms that were in the
software stack, an application that makes a large number of
I/O requests to an MQ-SSD can starve requests from other
applications, which can hurt overall system performance and
lead to denial-of-service issues [8, 84, 101]. Therefore, we con-
clude that there is a pressing need to introduce fairness control
mechanisms within modern SSD I/O request schedulers.

In order to understand how to control fairness in a modern
SSD, we experimentally analyze the sources of interference
among I/O flows from different applications in an SSD using
the detailed MQSim simulator [101]. Our experimental results
enable us to identify four major types of interference:
1. I/O Intensity: The SSD controller breaks down each I/O

request into multiple page-size (e.g., 4 kB) transactions. An

397

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00041

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

I/O flow with a greater flow intensity (i.e., the rate at which
the flow generates transactions) causes a flow with a lower
flow intensity to slow down, by as much as 49x in our
experiments (Section 3.1).

2. Access Pattern: The SSD contains per-chip transaction
queues that expose the high internal parallelism that is
available. Some I/O flows exploit this parallelism by in-
serting transactions that can be performed concurrently
into each per-chip queue. Such flows slow down by as
much as 2.4x when run together with an I/O flow that does
not exploit parallelism. This is because an I/O flow that
does not exploit parallelism inserts transactions into only
a small number of per-chip queues, which prevents the
highly-parallel flow’s transactions from completing at the
same time (Section 3.2).

3. Read/Write Ratio: Because SSD writes are typically 10–40x
slower than reads [62–64,67,92], a flow with a greater frac-
tion of write requests unfairly slows down a concurrently-
running flow with a smaller fraction of write requests, i.e.,
a flow that is more read-intensive (Section 3.3).

4. Garbage Collection: SSDs perform garbage collection
(GC) [10,13,16,23], where invalidated pages within the SSD
are reclaimed (i.e., erased) some time after the invalidation.
When an I/O flow requires frequent GC operations, these
operations can block the I/O requests of a second flow that
performs GC only infrequently, slowing down the second
flow by as much as 3.5x in our experiments (Section 3.4).

To address the lack of OS-level fairness control mechanisms,
prior work [36] implements a fair I/O request scheduling pol-
icy in the SSD controller that is similar to the software-based
policies previously used in the OS [120]. Unfortunately, this
approach has two shortcomings: (1) it cannot control two
types of interference, access pattern interference or GC inter-
ference; and (2) it significantly decreases the responsiveness
and overall throughput of an MQ-SSD [89]. Our goal in
this work is to design an efficient I/O request scheduler for
a modern SSD that (1) provides fairness among I/O flows by
mitigating all four types of interference within an SSD, and
(2) maximizes the performance and throughput of the SSD.

To this end, we propose the Flash-Level INterference-aware
scheduler (FLIN) for modern SSDs. FLIN considers the prior-
ity class of each flow (which is determined by the OS), and
carefully reorders transactions within the SSD controller to
balance the slowdowns incurred by flows belonging to the
same priority class. FLIN uses three stages to schedule re-
quests. The first stage, Intensity- and Parallelism-aware Queue
Insert, reorders transactions to mitigate the impact of different
I/O intensities and different access patterns. The second stage,
Flow-level Priority Arbitration, prioritizes transactions based
on the priority class of their corresponding flow. The third
stage, Read/Write Wait-Balancing, balances the overall stall
time of read and write requests, and schedules GC activities
to distribute the GC overhead proportionally across different
flows. FLIN is fully implementable in the firmware of a mod-
ern SSD. As such, it requires no additional hardware, and in
the worst case consumes less than 0.06% of the DRAM storage
space that is already available within the SSD controller.

Our evaluations show that FLIN significantly improves fair-
ness and performance across a wide variety of workloads and
MQ-SSD configurations. Compared to a scheduler that uses a
state-of-the-art scheduling policy [37] and fairness controls
similar to those previously used in the OS [36], FLIN improves
fairness by 70%, and performance by 47%, on average, across
40 MQ-SSD workloads that contain various combinations of

concurrently-running I/O flows with different characteristics.
We show that FLIN improves both fairness and performance
across all of our tested MQ-SSD configurations.

In this paper, we make the following major contributions:

• We provide an in-depth experimental analysis of unfairness
in state-of-the-art multi-queue SSDs. We identify four major
sources of interference that contribute to unfairness.

• We propose FLIN, a new I/O request scheduler for mod-
ern SSDs that effectively mitigates interference among
concurrently-running I/O flows to provide both high fair-
ness and high performance.

• We comprehensively evaluate FLIN using a wide variety of
storage workloads consisting of concurrently-running I/O
flows, and demonstrate that FLIN significantly improves
fairness and performance over a state-of-the-art I/O request
scheduler across a variety of MQ-SSD configurations.

2. Background and Motivation

We first provide a brief background on multi-queue SSD
(MQ-SSD) device organization and I/O request management
(Section 2.1). We then motivate the need for a fair MQ-SSD
I/O scheduler (Section 2.2).

2.1. SSD Organization

Figure 1 shows the internal organization of anMQ-SSD. The
components within an SSD are split into two groups: (1) the
back end, which consists of data storage units; and (2) the front
end, which consists of control and communication units. The
front end and back end work together to service the multiple
page-size I/O transactions that constitute an I/O request.

Host DRAMHost DRAM HIL

Device-level
Request Queues

FTL

Flash
Management

Data

WRQ
RDQ

Front end

Chip 0 Chip 1

Back end

GC-WRQ
GC-RDQ

Channel0

Chip 3 Queue

M
Q

-S
SD

Ho
st

-S
id

e
I/

O
 R

eq
ue

st
 Q

ue
ue

s

i

DRAM

Chip 0 Queue

Chip 2 Queue
Chip 1 Queue

FCCFCC

Chip 2 Chip 3
Channel1FCCFCC

Address
Translation

Address
Translation

Transaction
Scheduling
Unit (TSU)

Transaction
Scheduling
Unit (TSU)

Die 0

Plane0
Plane1

Die 0

Plane0
Plane1

Die 1

Plane0
Plane1

Die 1

Plane0
Plane1

M
ultiplexed
Interface

M
ultiplexed
Interface

Bus Interface
Bus Interface

M
ultiplexed
Interface

rf
M

ultiplexed
Interface

Bus Interface

Microprocessor

Request i,
 Page 1

Request i,
 Page M

Request i,
 Page 1

Request i,
 Page M

Figure 1: Internal organization of an MQ-SSD.

The back end containsmultiple channels (i.e., request buses),
where the channels can service I/O transactions in parallel.
Each channel is connected to one or more chips of the underly-
ing memory (e.g., NAND flash memory). Each chip consists of
one or more dies, where each die contains one or more planes.
Each plane can service an I/O transaction concurrently with
the other planes. In all, this provides four levels of parallelism
for servicing I/O transactions (channel, chip, die, and plane).

The front end manages the back end resources and issues
I/O transactions to the back end channels. There are three
major components within the front end [37, 61, 101]: (1) the
host–interface logic (HIL), which implements the protocol used
to communicate with the host and fetches I/O requests from
the host-side request queues in a round-robin manner [83];
(2) the flash translation layer (FTL), which manages SSD re-
sources and processes I/O requests [10,13] using an embedded
processor and DRAM; and (3) the flash channel controllers
(FCCs), which are used to communicate between the other
front end modules and the back end chips.

There are seven major steps in processing an I/O request.
(1) The host generates the request and inserts the request into
a dedicated in-DRAM I/O queue on the host side, where each

398

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

queue corresponds to a single I/O flow.1 (2) The HIL in the
MQ-SSD fetches the request from the host-side queue and
inserts it into a device-level queue within the SSD. (3) The HIL
parses the request and breaks it down into multiple transac-
tions. (4) The address translation module in the FTL performs
a logical-to-physical address translation for each transaction.
(5) The transaction scheduling unit (TSU) [101, 102] in the FTL
schedules each transaction for servicing [20, 102], and places
the transaction into a chip-level software queue. (6) The TSU
selects a transaction from the chip-level queue and dispatches
it to the corresponding FCC. (7) The FCC issues a command
to the target back end chip to execute the transaction.
In addition to processing I/O requests, the SSD controller

must perform maintenance operations. One such operation
is garbage collection (GC) [10, 13, 16, 23]. Due to circuit-level
limitations, many of the underlying memories used in SSDs
must perform writes to a logical page out of place (i.e., the data
is written to a new physical page). For example, in NANDflash
memory, before new data can be written to a physical page,
the page must first be erased. The erase operation can only be
performed at the granularity of a flash block, which contains
hundreds of pages [10, 13]. Since many other pages in a block
may still contain valid data at the time of the update, the
block containing the page that is being updated is typically not
erased at that time, and the page is simply marked as invalid.
Periodically, the GC procedure (1) identifies candidate blocks
that are ready to be erased (i.e., blocks where most of the pages
are marked as invalid), (2) generates read/write transactions
to move any remaining valid data in each candidate block to
another location; and (3) generates an erase transaction for
each block.

The TSU is responsible for scheduling both I/O transactions
and GC transactions. For I/O transactions, it maintains a
read queue (RDQ in Figure 1) and a write queue (WRQ) in
DRAM for each back end chip. GC transactions are kept in a
separate set of read (GC-RDQ) and write (GC-WRQ) queues
in DRAM. The TSU typically employs a first-come first-serve
transaction scheduling policy, and typically prioritizes I/O
transactions over GC transactions [51, 117]. To better exploit
the parallelism available in the back end, some state-of-the-art
TSUs partially reorder the transactions within a queue [37,40].

2.2. The Need for Fairness Control in an SSD
When multiple I/O flows are serviced concurrently, the be-

havior of the requests of one flow can negatively interfere with
the requests of another flow. In order to understand the impact
of such inter-flow interference, and how the scheduler affects
this type of interference, we would like to quantify how fairly
the requests of different flows are being treated. We say that
an I/O scheduler is completely fair if concurrently-running
flows with equal priority experience the same slowdown due
to interference [19, 22, 70, 73, 84]. The slowdown Si of flow i
can be calculated as:

Si = RT
shared
i /RTalonei (1)

where RTsharedi is the average response time of flow i when it

runs concurrently with other flows, and RTalonei is the same
flow’s average response time when it runs alone. The response

1In this work, we use the term flow to indicate a series of I/O requests
that (1) are generated by a single user process; or (2) originate from the
same host-side I/O queue (e.g., for systems running virtual machines, where
fairness should be enforced at the VM level [36], and where each VM can be
assigned to a dedicated I/O queue). To simplify explanations without loss of
generality, we associate each flow with a dedicated host-side I/O queue in
this work.

time of each request is measured from the time the request
is generated on the host side to the time the host receives a
response from the SSD. We define fairness (F) [22] as the ratio
of the maximum and minimum slowdowns experienced by
any flow in the system:

F = MIN
i

{Si}/MAX
i

{Si} (2)

As defined, 0 < F ≤ 1. A lower F value indicates a greater
difference between the flow that is slowed down the most and
the flow that is slowed down the least, which is more unfair to
the flow that is slowed down the most. In other words, higher
values of F are desirable.

We conduct a large set of real system experiments to study
the fairness of scheduling policies implemented in four real
MQ-SSDs [31, 33, 65, 111] (which we call SSD-A through SSD-
D), using workloads that capture a wide range of I/O flow be-
havior (see Section 6). Figure 2 shows the slowdowns and fair-
ness for a representative workloadwhere amoderate-intensity
read-dominant flow (generated by the tpce application; see
Table 2) runs concurrently with a high-intensity flow with
an even mix of reads and writes (generated by the tpcc ap-
plication; see Table 2), as measured over a 60 s period. We
make two key observations from the figure. First, the amount
of interference between the two flows fluctuates greatly over
the period, which leads to high variability in the slowdown
of each flow. Across the four SSDs, tpce experiences slow-
downs as high as 2.8x, 69x, 661x, and 11x, respectively, while
its average slowdowns are 2x, 4.4x, 106x, and 5.3x. Second, the
SSDs that we study do not provide any fairness guarantees.
We observe that tpcc does not experience high slowdowns
throughout the entire period. We conclude that modern MQ-
SSDs focus on providing high performance at the expense of
large amounts of unfairness, because they lack mechanisms
to mitigate interference among flows.

1
2
3
4
5

S
lo

w
do

w
n

tpce tpcc

0.00
0.25
0.50
0.75
1.00

0 10 20 30 40 50 60

F
ai

rn
es

s

Time (s)

(a) SSD-A

15
30
45
60

S
lo

w
do

w
n

tpce tpcc

0.00
0.25
0.50
0.75
1.00

0 10 20 30 40 50 60

F
ai

rn
es

s

Time (s)
(b) SSD-B

150
300
450
600

S
lo

w
do

w
n tpce tpcc

0.00
0.25
0.50
0.75
1.00

0 10 20 30 40 50 60

F
ai

rn
es

s

Time (s)
(c) SSD-C

3
6
9

12

S
lo

w
do

w
n tpce tpcc

0.00
0.25
0.50
0.75
1.00

0 10 20 30 40 50 60

F
ai

rn
es

s

Time (s)
(d) SSD-D

Figure 2: Slowdown and fairness of flows in a representative
workload on four real MQ-SSDs.

3. An Analysis of Unfairness in MQ-SSDs
As Section 2.2 shows, real MQ-SSDs do not provide fair-

ness across multiple queues. This is because state-of-the-art
transaction scheduling units (TSUs) [20, 37, 40, 77, 90, 112] are
designed to maximize the overall I/O request throughput of
the entire SSD, and thus they do not take into account the
throughput of each flow. Our goal in this work is to design a
high-performance TSU for MQ-SSDs that delivers high SSD
throughput while providing fairness for each flow.

In order to meet this goal, we must (1) identify the runtime
characteristics of each I/O flow, and (2) understand how these

399

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

characteristics lead to unfairness. An I/O flow is made up of a
stream of I/O requests, where each request is defined by its
arrival time, starting address, size of the data that it requires,
and access type (i.e., read or write) [42, 79, 119]. Based on the
requests that make up a particular flow, we define four key
characteristics of the flow: (1) I/O intensity, (2) access pattern,
(3) read/write ratio of the requests in the flow, and (4) garbage
collection (GC) demands of the flow. In this section, we study
how differences in each of these characteristics can lead to
unfairness, using the methodology described in Section 6.

3.1. Flows with Different I/O Intensities

The I/O intensity of a flow refers to the rate at which the
flow generates transactions. This is dependent on the arrival
time and the size of the I/O requests (as larger I/O requests
generate a greater number of page-sized transactions). There
are three factors that contribute to the amount of time required
to service each transaction, which is known as the transaction
turnaround time: (1) the wait time at the chip-level queue,
(2) the transfer time between the front end and the back end,
and (3) the time required to execute the transaction in the
memory chip. As the intensity of a flow increases, the transfer
time and execution time do not change, but the wait time at
the chip-level queue grows.

Figure 3 shows how flow intensity affects chip-level queue
length and average transaction turnaround time. We run a
100%-read synthetic flowwhere we vary the I/O intensity from
16MB/s to 1024MB/s. Figures 3a and 3b show, respectively,
the average length of the chip-level queues and the breakdown
of the transaction turnaround time with respect to the I/O
intensity. We make three conclusions from the figures. First,
the lengths of the chip-level queues increase proportionately
with the I/O intensity of the running flow. Second, a longer
queue leads to a longer wait time for transactions. Third, as
the flow intensity increases, the contribution of the queue wait
time to the transaction turnaround time increases, dominating
the other two factors (shown in the figure).

1

10

102

103

104

105

106

16 32 64 128 256 512 1024

N
or

m
al

iz
ed

 C
hi

p-
le

ve
l

Q
ue

ue
 L

en
gt

h

Flow I/O Intensity (MB/s)

(a) Chip-level queue length

 0

 40

 80

 120

 160

 200

 240

16 32 64 128 256 512 1024A
vg

. F
la

sh
 T

ra
ns

ac
tio

n
T

ur
na

ro
un

d
T

im
e

(μ
s)

Flow I/O Intensity (MB/s)

Flash Operation
Bus Transfer

Chip Queue Waiting

36
78

(b) Transaction turnaround time

Figure 3: Effect of flow I/O intensity.

When two flows with different I/O intensities execute con-
currently, each flow experiences an increase in the average
length of the chip-level queues, which can more adversely
affect the flow with a low I/O intensity than the flow with a
high I/O intensity. To characterize the effect, we execute a
low-intensity 16MB/s synthetic flow, referred to as the base
flow, together with a synthetic flow of varying I/O intensities,
referred to as the interfering flow. The I/O requests of the two
flows are purely reads. Figure 4 depicts the slowdown and fair-
ness results. The x-axis shows the intensity of the interfering
flow. We observe that even when the intensity of the inter-
fering flow exceeds 256MB/s, the slowdown of the interfering
flow is very small, while the base flow is slowed down by as
much as 49x. The unfair slowdown of the base flow is due to a
drastic increase in the average length of the chip-level queues

compared to when the base flow runs alone. We conclude that
the average response time of a low-intensity flow substantially
increases due to interference from a high-intensity flow.

3.2. Flows with Different Access Patterns
The access pattern of a flow determines how its transactions

are distributed across the chip-level queues. Some flows can
take advantage of the parallelism available in the back end
of the SSD, by distributing their transactions across all of
the chip-level queues equally. Other flows do not benefit as
much from the back-end parallelism, as their transactions are
distributed unevenly across the chip-level queues. The access
pattern depends on the starting addresses and sizes of each
request in the flow.

To analyze the interference between concurrent flows with
different access patterns, we run a base flow with a stream-
ing access pattern [50, 70] together with an interfering flow
whose access pattern changes periodically between streaming
and random (i.e., we can control the fraction of time the flow
performs random accesses). Figure 5 shows the slowdown of
the two flows and the fairness of the SSD. The x-axis shows
the randomness of the interfering flow. We observe that as
the randomness of the interfering flow increases, the MQ-SSD
becomes more unfair to the base flow. Both the probability
of resource contention and the transaction turnaround time
increase when the two flows are executed together. However,
the base flow, which highly exploits and benefits from chip-
level parallelism, is more susceptible to interference from the
interfering flow. The uneven distribution of transactions from
the interfering flow causes some, but not all, of the base flow’s
transactions to stall. As a result, the base flow’s parallelism
gets destroyed, and the flow slows down until its last trans-
action is serviced. We conclude that flows with parallelism-
friendly access patterns are susceptible to interference from flows
with access patterns that do not exploit parallelism.

Base flow Interfering flow Fairness

0.0

0.6

1.2

1.8

2.4

3.0

16 32 64 1282565121024
0.0

0.2

0.4

0.6

0.8

1.0

S
lo

w
do

w
n

F
ai

rn
es

s

Intensity of
the Interfering Flow (MB/s)

49

Figure 4: Effects of concur-
rently executing two flows
with different I/O intensities
on fairness.

0.0

0.6

1.2

1.8

2.4

3.0

0% 25% 50% 75% 100%
0.0

0.2

0.4

0.6

0.8

1.0

S
lo

w
do

w
n

F
ai

rn
es

s

Randomness of
the Interfering Flow

Figure 5: Effects of con-
currently executing two
flows with different access
patterns on fairness.

3.3. Flows with Different Read/Write Ratios
As reads are 10-40x faster than writes, and are more likely

to fall on the critical path of program execution, state-of-the-
art MQ-SSD I/O schedulers tend to prioritize reads over writes
to improve overall performance [20, 112]. To implement read
prioritization, TSUs mainly adopt two approaches: (1) trans-
actions in the read queue are always prioritized over those in
the write queue, and (2) a read transaction can preempt an
ongoing write transaction.
Unfortunately, read prioritization increases the wait time

of write transactions, and can potentially slow down write-
dominant flows in an MQ-SSD [84]. Figure 6 compares the
response time and fairness of an SSD using a read-prioritized

400

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

scheduler (RP) with that of an SSD with a first-come first-
serve scheduler (FCFS), which processes all transactions in
the order they are received. In this experiment, we use two
concurrently-running synthetic flows, where we control the
rate at which the flows can issue new requests to the SSD
by limiting the size of the host-side queue. We sweep the
write rate of the base flow (0%, 30%, 70%, and 100%), shown
as different curves, and set the host-side queue length to one
request. We set the host-side queue length for the interfering
flow to six requests (i.e., it has 6x the request rate of the
base flow) to increase the probability of interference, and
we sweep the interfering flow’s read ratio from 0% to 100%.
In Figures 6a and 6b, the x-axis marks the read ratio of the
interfering flow. We make three observations from the figures.
First, RP maintains or improves the average response time for
all flow configurations over FCFS. Second, RP leads to lower
fairness than FCFS when the interfering flow is heavily read-
dominant (i.e., its read ratio > 80%). Third, fairness in an SSD
with RP increases when the read ratio of the interfering flow
decreases. We conclude that when concurrently-running flows
have different read/write ratios, existing scheduling policies are
not effective at providing fairness.

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%

R
es

po
ns

e
T

im
e

Im
pr

ov
em

en
t

Read Ratio of
the Interfering Flow

-75%

-50%

-25%

0%

25%

50%

75%

100%

0% 20% 40% 60% 80% 100%F
ai

rn
es

s
Im

pr
ov

em
en

t

Read Ratio of
the Interfering Flow

100% WR in base flow
70% WR in base flow

30% WR in base flow
0% WR in base flow

(a) Response time improvement of
RP compared to FCFS

(b) Fairness improvement of RP
compared to FCFS

Figure 6: Effects of read prioritization.

3.4. Flows with Different GC Demands
GC is one of themajor sources of performance fluctuation in

SSDs [26,27,38,41,51,54,108]. The rate at which GC is invoked
depends primarily on the write intensity and access pattern of
the flow [107]. A flow that causes GC to be invoked frequently
(high-GC) can disproportionately slow down a concurrently-
running flow that does not invoke GC often (low-GC). Prior
works that optimize GC performance [26,27,38,41,51,54,108]
can reduce interference between GC operations and trans-
actions from I/O requests, and thus can improve fairness.
However, these works cannot completely eliminate interfer-
ence between a high-GC flow and a low-GC flow that occurs
when a high-GC flow results in a write cliff (i.e., when the
high intensity of the write requests causes GC to be invoked
frequently, resulting in a large drop in performance [39]).
Figure 7 shows the effect of GC execution on MQ-SSD

fairness. We run a base flow with moderate GC demands (i.e.,
8MB/s write rate) and an interfering flow where we change the
GC demands by varying thewrite rate (2MB/s to 64MB/s). We
evaluate three different scenarios for GC: (1) no GC execution,
assuming the MQ-SSD capacity is infinite; (2) default (i.e.,
non-preemptive) GC execution; and (3) semi-preemptive GC
(SPGC) [51,52] execution. SPGC tries to mitigate the negative
effect of GC on user I/O requests by allowing user transactions
to preempt GC activities when the number of free pages in the
SSD is above a specific threshold (GChard). Figure 7a shows

the fraction of time spent on I/O requests and on GC when
the base flow (the leftmost column) and the interfering flow
(all other columns) are executed alone. Figures 7b, 7c, and
7d show the slowdown of the base flow, the slowdown of the
interfering flow, and the fairness of the MQ-SSD, respectively.
The x-axis in these figures represents the write intensity of
the interfering flow.

0%

20%

40%

60%

80%

100%

base flo
w 2 4 8 16 32 64

F
la

sh
 C

hi
p

S
ta

tu
s

B
re

ak
do

w
n

Intensity of
Interfering Flow (MB/s)

User I/O
GC Activities
Idle

(a) Breakdown of chip status
over the entire simulation time

 0

 1

 2

 3

 4

2 4 8 16 32 64

S
lo

w
do

w
n

Intensity of the Interfering Flow (MB/s)

No GC
Default GC
SPGC

(b) Slowdown of base flow

 0

 1

 2

 3

 4

2 4 8 16 32 64

S
lo

w
do

w
n

Intensity of the Interfering Flow (MB/s)

No GC
Default GC
SPGC

(c) Slowdown of interfering flow

0.0

0.2

0.4

0.6

0.8

1.0

2 4 8 16 32 64

F
ai

rn
es

s

Intensity of the Interfering Flow (MB/s)

No GC
Default GC
SPGC

(d) Fairness

Figure 7: Effects of GC demands on fairness.

We make four key observations. First, the GC activities
increase proportionately with write intensity. Second, as the
write intensity of the interfering flow increases, which triggers
more GC operations, fairness decreases. Third, when the
difference between the GC demands of the base flow and the
interfering flow increases, the default GCmechanism leads to a
higher slowdown of the base flow, degrading fairness. Fourth,
SPGC improves fairness over the default GC mechanism, but
only by a small amount, as SPGC disables preemption when
there are a large number of pending writes. We conclude that
the GC activities of a high-GC flow can unfairly block flash
transactions of a low-GC flow.

4. FLIN: Fair, High-Performance Scheduling
As Section 3 shows, the four sources of interference that

slow down flows all result from interference among the trans-
actions that make up each flow. Based on this insight, we
design a new MQ-SSD transaction scheduling unit (TSU)
called the Flash-Level INterference-aware scheduler (FLIN).
FLIN schedules and reorders transactions in a way that sig-
nificantly reduces each of the four sources of interference, in
order to provide fairness across concurrently-running flows.

FLIN consists of three stages, as shown in Figure 8. The first
stage, fairness-aware queue insertion, inserts each new trans-
action from an I/O request into the appropriate read/write
queue (Section 4.1). The position at which the transaction is
inserted into the queue depends on the current intensity and
access pattern of the flow that corresponds to the transaction,
such that (1) a low-priority flow is not unfairly slowed down,
and (2) a flow that can take advantage of parallelism in the
back end does not experience interference that undermines
this parallelism. The second stage, priority-aware queue arbi-
tration, uses priority levels that are assigned to each flow by
the host to determine the next read request and the next write
request for each back end memory chip (Section 4.2). The ar-
biter aims to ensure that all flows assigned to the same priority
level are slowed down equally. The third stage, wait-balancing
transaction selection, selects the transaction to dispatch to the

401

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

flash chip controllers (FCCs, which issue commands to the
memory chips in the back end; see Section 2.1) in a way that
alleviates the interference introduced by read/write ratio dis-
parities among flows and by garbage collection (Section 4.3).
To achieve this, the scheduler chooses to dispatch a read trans-
action, a write transaction, or a garbage collection transaction,
in a way that (1) balances the slowdown for read transactions
with the slowdown of write transactions, and (2) distributes
the overhead of garbage collection transactions fairly across
all flows. FLIN is designed to be easy to implement, with low
overhead, as we describe in Section 5.

St
ag

e
1

Fa
irn

es
s-

aw
ar

e
Q

ue
ue

 In
se

rt
io

n

Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

RDQ WRQ

QP

St
ag

e
2

Pr
io

rit
y-

aw
ar

e
Q

ue
ue

 A
rb

itr
at

io
n Chip 0

Queue
Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

GC-WRQ

Write Slot
Read Slot

GC-RDQ St
ag

e
3

W
ai

t-
ba

la
nc

in
g

Tr
an

sa
ct

io
n

Se
le

ct
io

n

Q1

Q2

QP

Q1

Q2

F l
as

h
Tr

an
sa

ct
io

ns

FC
C

FC
C

DRAM DRAM
Figure 8: High-level overview of FLIN.

4.1. Fairness-Aware Queue Insertion
We design fairness-aware queue insertion, the first stage of

FLIN, to relieve interference that occurs due to the intensity
and access pattern of concurrently-running flows. Within the
first stage, FLIN maintains separate per-chip read and write
queues (RDQ and WRQ in Figure 8, respectively) for each
flow priority level, since priorities are not processed until the
second stage of FLIN. Fairness-aware queue insertion uses a
heuristic O(t) algorithm to determine where each transaction
is inserted within the queue that corresponds to the access
type (i.e., read or write) of the transaction and the priority
level of the flow that generated the transaction. Finding the
optimal ordering of transactions in each queue is a variant
of the multidimensional assignment problem [85], which is
NP-hard [82]. FLIN uses a heuristic that approximates the
optimal ordering, in order to bound the time required for the
first stage and to minimize the fraction of the transaction
turnaround time that is spent on scheduling.

Algorithm 1 shows the heuristic used to insert a new trans-
action (TRnew) into its corresponding chip-level queue (Q).
The heuristic is based on three key insights: (1) the perfor-
mance of a low-intensity flow is very sensitive to the increased
queue length when a high-intensity flow inserts many trans-
actions (Section 3.1); (2) some flows can change between being
high-intensity and low-intensity, based on the current phase
of the application [80]; and (3) some, but not all, of the transac-
tions from a flow that take advantage of back-end parallelism
experience high queue wait times when a flow with poor
parallelism inserts requests into some, but not all, of the chip-
level queues (Section 3.2). The algorithm consists of two steps,
which we describe in detail.

Step 1: Prioritize Low-Intensity Flows. Transactions
from a low-intensity flow are always prioritized over transac-
tions from a high-intensity flow. Figure 9a shows an example
snapshot of a chip-level queue when FLIN inserts a newly-
arrived transaction (TRnew) into the queue. The heuristic
checks to see whether TRnew belongs to a low-intensity flow
(line 9 of Algorithm 1; see Section 5.1 for details). If TRnew is
from a low-intensity flow, the heuristic inserts TRnew into the
queue immediately after Lastlow , the location of the farthest
transaction from the head of the queue that belongs to a low-
intensity flow (line 10), and advances to Step 2a (line 12). If

Algorithm 1 Fairness-aware queue insertion in FLIN.
1: Inputs:
2: Q: the chip-level queue to insert the new transaction
3: TRnew: the newly arriving flash transaction
4: Source: source flow of the new transaction
5: Fthr : fairness threshold for high-intensity flows
6:
7: Lastlow ← farthest transaction from head of Q belonging to a low-intensity flow
8: // Step 1: Prioritize Low-Intensity Flows
9: if Source is a low-intensity flow then // more detail in Section 5.1
10: Insert(TRnew after Lastlow)
11: // Step 2a: Maximize Fairness Among Low-Intensity Flows.
12: Estimate waiting time of TRnew as if Source were running alone // Section 5.2
13: Reorder transactions of low-intensity flows in Q for fairness // Section 5.3
14: else
15: Insert(TRnew at the tail of Q)
16: // Step 2b: Maximize Fairness Among High-Intensity Flows.
17: Estimate waiting time of TRnew as if Source were running alone
18: F ← Estimate fairness from average slowdown of departed transactions (Q)
19: if F < Fthr and Source has experienced the maximum slowdown then
20: Move TRnew to Lastlow + 1
21: else Reorder transactions from the tail of Q to Lastlow + 1 for fairness

Tail Head

Chip-level Queue (Q)

TRnewTRnewTRnewTRnewIf Source of TRnew
is high-intensity

If Source of TRnew
is low-intensity

TR1TR2TR3TR4TR5TR6TR8TR9TR10TR11

Lastlow

Transactions from
high-intensity flows

Transactions from
low-intensity flows

(a) Step 1 of Algorithm 1() p g

Chip-level Queue (Q) TRnewTRnew

Reorder transactions to
improve fairness

TR1TR2TR3TR4TR5TR6TR8TR9TR10TR11

(b) Step 2a of Algorithm 1

Chip-level Queue (Q) TRnewTRnew

Reorder transactions to improve fairness
TR1TR2TR3TR4TR5TR6TR8TR9TR10TR11

(c) Step 2b of Algorithm 1

Figure 9: Fairness-aware queue insertion in FLIN.

TRnew belongs to a high-intensity flow, the heuristic inserts
the transaction at the tail of the queue (line 15), and advances
to Step 2b (line 17).

Step 2a: Maximize Fairness Among Low-Intensity
Flows. The heuristic begins this step by estimating how long
TRnew would have to wait to be serviced if its source flow
were running alone (line 12). This estimate is also used to
determine a transaction’s slowdown and is kept alongside the
transaction in the queue. The heuristic then reorders transac-
tions of low-intensity flows in the queue for fairness (line 13).
As Figure 9b shows, this involves moving TRnew from the tail
of the low-intensity-flow transactions closer to the head, in
order to maximize the ratio of the minimum slowdown to
maximum slowdown for all pending transactions from low-
priority flows. This reordering step prioritizes a transaction
(i.e., moves it closer to the queue head) that has a greater
slowdown, which indicates that its source flow either (1) has a
lower intensity, or (2) better utilizes the parallelism available
in the MQ-SSD back end. We describe the details of the alone
wait time estimation (line 12) and the reordering step (line 13)
in Sections 5.2 and 5.3, respectively.

Step 2b: Maximize Fairness Among High-Intensity
Flows. Figure 9c shows a general overview of Step 2b. The
heuristic begins this step by estimating the alone wait time of
TRnew (line 17), using the same procedure in Step 2a. However,
unlike the low-intensity-flow transactions, this step performs
slowdown-aware queue shuffling in order to prevent any one
high-intensity flow from being treated much more unfairly
than the other high-intensity flows. After a new high-intensity
transaction is inserted into the queue, the heuristic checks the
current fairness (line 18). If the fairness is lower than a prede-

402

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

termined threshold (Fthr), and the new transaction belongs to
the flow with the maximum slowdown (line 19), the heuristic
moves the transaction ahead of all other high-intensity-flow
transactions (line 20). This approach can often help flows that
are transitioning from low-intensity to high-intensity, as such
flows are particularly susceptible to interference from other
high-intensity flows. If fairness is above the threshold, which
means that all high-intensity flows are being treated some-
what fairly, the heuristic only reorders the high-intensity-flow
transactions for fairness (line 21).

4.2. Priority-Aware Queue Arbitration
Many host–interface protocols, such as NVMe [83], allow

the host to assign different priority levels to each flow. The
second stage of FLIN enforces these priorities, and ensures
that flows at the same priority level are slowed down by an
equal amount. As we discuss in Section 4.1, FLIN maintains a
read and write queue for each priority level (i.e., if there are P
priority levels as defined by the protocol, FLIN includes P read
queues and P write queues in the DRAM of the SSD, for each
flash chip). Priority-aware queue arbitration selects one ready
read transaction from the transactions at the head of the P
read queues, and one ready write transaction from the trans-
actions at the head of the P write queues. The two selected
transactions then move to the last stage of the scheduler.

Whenever more than one queue has a transaction at the
queue head that is ready to execute (i.e., the back end re-
sources it requires are not being used by another transaction),
the queue arbiter uses a weighted round-robin policy [76] to
select the read and write transactions that move to the next
scheduling stage. If the protocol defines P priority levels,
where level 0 is the lowest priority and level P – 1 is the
highest priority, FLIN assigns the weight 2i to priority level
i. Under weighted round-robin, this means that out of every∑

i 2
i scheduling decisions in the second stage, transactions

in the priority level i queue receive 2i of these slots.

4.3. Wait-Balancing Transaction Selection
We design wait-balancing transaction selection, the last

stage of FLIN, to minimize interference that occurs due to the
read/write ratios (Section 3.3) and garbage collection demands
of concurrently-running flows (Section 3.4). A transaction
stalls if the back-end resources that it needs are being used by
another transaction (which can be a transaction from another
flow, or a garbage collection transaction). Wait-balancing
transaction selection attempts to distribute this stall time
evenly across all read and write transactions.

Wait-balancing transaction selection chooses one of the fol-
lowing transactions to dispatch to the FCC: (1) the ready read
transaction determined by priority-aware queue arbitration
(Section 4.2), which is stored in a read slot in DRAM; (2) the
ready write transaction determined by priority-aware queue
arbitration, which is stored in a write slot in DRAM; (3) the
transaction at the head of the garbage collection read queue
(GC-RDQ); and (4) the transaction at the head of the garbage
collection write queue (GC-WRQ). Algorithm 2 depicts the
selection heuristic, which consists of two steps.

Step 1: Estimate the Proportional Wait. FLIN uses a
novel approach to determine when to prioritize reads over
writes, which we call proportional waiting. Previous schedul-
ing techniques [20, 112] always prioritize reads over writes,
which as we show in Section 3.3 leads to unfairness. Propor-
tional waiting avoids this unfairness.

Algorithm 2Wait-balancing transaction selection in FLIN.
1: Inputs:
2: ReadSlot: the read transaction waiting to be issued to the SSD back end
3: WriteSlot: the write transaction waiting to be issued to the SSD back end
4: GC-RDQ, GC-WRQ: the garbage collection read and write queues
5:
6: PWread ← EstimateProportionalWait (ReadSlot) // Section 5.4
7: PWwrite ← EstimateProportionalWait (WriteSlot) // Section 5.4

8: if PWread > PWwrite then
9: Dispatch ReadSlot to FCC (flash chip controller)
10: else
11: if number of free pages < GCFLIN then
12: GCMigrationCount ← AssignGCMigrations(WriteSlot) // Section 5.4

13: while GCMigrationCount > 0 do
14: Dispatch the transaction at the head of GC-RDQ to FCC
15: Dispatch the transaction at the head of GC-WRQ to FCC
16: GCMigrationCount ← GCMigrationCount - 1

17: Dispatch WriteSlot to FCC

We define the proportional wait time (PW) of a transaction
as the ratio of its wait time in the scheduler (Twait), from the
time that the transaction is received by the scheduler until
the time the transaction is dispatched to the FCC, over the
sum of the time required to perform the operation in the
memory (Tmemory) and transfer data back to the front end
(Ttransfer). The transaction in the read slot is prioritized over
the transaction in the write slot when the read transaction’s
proportional wait time is greater than the write transaction’s
proportional wait time (lines 6–8 in Algorithm 2).

Step 2: Dispatch Transactions. If the read transaction is
prioritized, it is dispatched to the flash channel controller (see
Section 2.1) right away (line 9). If the write transaction is pri-
oritized, the scheduler then considers also dispatching garbage
collection operations, since a write transaction takes signifi-
cantly longer to complete than a read transaction and the cost
of garbage collection operations can be amortized by serv-
ing them together with the selected write transaction. If the
number of free pages available in the memory is lower than a
pre-determined threshold (GCFLIN), and there are garbage col-
lection transactions waiting in the GC-RDQ or GC-WRQ, the
scheduler (1) determines how many of these transactions to
perform, which is represented by GCMigrationCount (line 12),
and (2) issues GCMigrationCount transactions (lines 13–16).
Since garbage collection transactions read a valid page and
write the page somewhere else in the memory, FLIN always ex-
ecutes a pair of read and write transactions. Once the garbage
collection transactions are done, the scheduler dispatches the
write transaction (line 17).

Optimizations. FLIN employs two optimizations beyond
the basic read-write wait-balancing algorithm. First, FLIN
supports write transaction suspension [112] whenever the pro-
portional wait time (PW) of the transaction in the read slot is
larger than the PW of the currently-executing write operation.
Second, when the read and write slots are empty, FLIN dis-
patches a pair of garbage collection read/write transactions.
If a transaction arrives at the read slot when the garbage col-
lection transactions are being executed, FLIN preempts the
garbage collection write and executes the transaction at the
read slot, to avoid unnecessarily stalling the incoming read.

5. Implementation of FLIN
To realize the high-level behavior of FLIN (Section 4), we

need to implement a number of functions, particularly for
Stages 1 and 3 of the scheduler. We discuss each function in
detail in this section, and then discuss the overhead required
to implement FLIN in an MQ-SSD.

403

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

5.1. Classifying Flow I/O Intensity
The first stage of FLIN dynamically categorizes flows as

either low-intensity or high-intensity, with separate classifi-
cations for the flow’s read behavior and its write behavior.
FLIN performs this classification over fixed-length intervals.
During each interval, FLIN records the number of read and
write transactions enqueued by each flow. At the end of the
interval, FLIN uses the transaction counts to calculate the read
and write arrival rates of each flow. If the read arrival rate of
a flow is lower than a predetermined threshold αread

C , FLIN
classifies the flow as low-intensity for reads; otherwise, FLIN
classifies the flow as high-intensity for reads. FLIN performs
the same classification for write intensity using the write ar-
rival rate of the flow, and a predetermined threshold αwrite

C .
We empirically set the epoch length to 10ms, which we find
is short enough to detect changes in flow intensity, but long
enough to capture differences in intensity among the flows.

5.2. Estimating Alone Wait Time and Slowdown
The first stage of FLIN estimates the alone wait time of

each transaction when the transaction is enqueued. After-
wards, whenever the transactions are reordered for fairness
in the first stage (see Section 4.1), FLIN uses the alone wait
time estimate to predict how much each individual trans-
action will be slowed down due to flow-level interference.
The slowdown of an individual transaction, STR, is calcu-
lated as STR = TTRshared/T

TR
alone , where T

TR
shared is the transaction

turnaround time when the flow corresponding to the trans-

action runs concurrently with other flows, and TTRalone is the
transaction turnaround time when the flow runs alone. For
both the shared and alone turnaround times, FLIN estimates
TTR using the following equation:

TTR = TTRmemory + T
TR
transfer + T

TR
wait (3)

TTRmemory and TTRtransfer are the times required to execute a com-

mand in the memory chip and transfer the data between the
back end and the front end, respectively. Both values are con-
stants that are determined by the speed of the components

within the MQ-SSD. TTRwait is the amount of time that the trans-
action must wait in the read or write queue before it is issued
to the back end.

To estimate TTRalone , FLIN must estimate TTRwait_alone , which is

the alone wait time. If the flow were running alone, the only
other requests that the transaction would wait on are other
requests in the same queue from the same flow. As a result,
FLIN uses the last request inserted into the same queue by
the same flow to determine how long the current transaction
would have to wait if the other flows were not running. This
can be determined by calculating how much longer the last
request needs to complete:

TTRwait_alone = T
last
enqueue + T

last
alone – Tnow (4)

Essentially, we take the timestamp at which the last re-

quest was enqueued (Tlastenqueue), add its estimated transaction

turnaround time (Tlastalone) to determine the timestamp at which
the request is expected to finish, and subtract the current
timestamp (Tnow) to determine the remaining time needed to
complete the request. If the queue contains no other transac-
tions from the same flow when the transaction arrives, then
the transaction would not have to wait if the flow was run
alone, so FLIN sets TTRwait_alone to 0.

To estimate TTRshared , FLIN estimates TTRwait_shared based on

the current position of the transaction in the queue. For a
transaction sitting at the p-th position in the queue (where
the request at the head of the queue is at position 1), FLIN
uses the following equation:

TTRwait_shared =Tnow – Tenqueued + Tchip_busy

+

p–1∑
i=1

(
Timemory + T

i
transfer

) (5)

Tnow – Tenqueued gives the time that has elapsed since the

transaction was enqueued (i.e., how long the transaction has

already waited for). To compute TTRwait_shared , FLIN adds the

time elapsed so far to the amount of time left to service the
currently-executing transaction (Tchip_busy), and the time re-
quired to execute and transfer data for all transactions ahead
in the queue that have not yet been issued to the back end.

While FLIN calculates Tlastalone only once (when a transaction

is first enqueued), it calculates TTRalone and T
TR
shared every time

the slowdown of an individual transaction needs to be used
during the first stage.

5.3. Reordering Transactions for Fairness
When the first stage of FLIN reorders transactions within a

region of a transaction queue for fairness (in Steps 2a and 2b
in Section 4.1), it scans through all transactions in the region
to find a position for the newly-arrived transaction (TRnew)
that maximizes the ratio of minimum to maximum slowdown
of the queued transactions. This requires FLIN to perform
two passes over the transactions within the queue region.

During the first pass, FLIN estimates the slowdown of each
transaction in the region (see Section 5.2). Then, it calculates
fairness across all enqueued requests by using Equation 2 over
the per-transaction slowdowns.

During the second pass, FLIN starts with the last transaction
in the queue region (i.e., the one closest to the queue tail), and
uses the slowdown to determine the insertion position for
the newly-arrived transaction that is expected to increase
fairness by the largest amount. To do this, at every position p,
FLIN estimates the change in fairness by recalculating the
slowdown only for (1) the newly-arrived transaction, if it
were to be inserted into position p; and (2) the transaction
currently at position p, if it were moved to position p–1. FLIN
keeps track of the position that leads to the highest fairness
as it checks all of the positions in the queue region. After the
second pass is complete, FLIN moves TRnew to the position
that would provide the highest fairness.
With this two-pass approach, if TRnew is from a flow that

has only a few transactions in the queue (e.g., the flow is
low-intensity), the reordering moves the transaction closer
to the head of the queue. Hence, FLIN significantly reduces
the slowdown of the transaction, making its slowdown value
more balanced with respect to transactions from other flows.

5.4. Estimating Proportional Wait Time
The third stage of FLIN chooses whether to dispatch the

transaction in the read slot or the transaction in the write slot
to the flash chip controller (FCC), by selecting the transaction
that has the higher proportional wait time. In Section 4.3, we
define the proportional wait time (PW) as:

PW = Twait ÷ (Tmemory + Ttransfer) (6)

404

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

Tmemory and Ttransfer are the execution and data transfer time,

respectively, of a read or write transaction that is issued to
the back end of the SSD. Twait represents how long the total
wait time of the transaction would be, starting from the time
the host made the I/O request that generated the transaction,
if FLIN chooses to issue the transaction in the other slot first.
In other words, if FLIN is evaluating PW for the transaction
in the read slot, it calculates how long that transaction would
have to wait if the transaction in the write slot were performed
first. We can calculate Twait as:

Twait = Tnow – Tenqueued + Tother_slot + TGC (7)

Tnow – Tenqueued gives the amount of time that the transac-
tion has already waited for, Tother_slot is the time required to
perform the operation waiting in the other slot first, and TGC
is the amount of time required to perform pending garbage
collection transactions. Recall from Algorithm 2 (Section 4.3)
that if the transaction in the read slot is selected, no garbage
collection transactions are performed, so TGC = 0. TGC can
be non-zero if the transaction in the write slot is selected.
To determine Tother_slot , we add the time needed to exe-

cute the transaction and transfer data together with the time
needed for any garbage collection transactions that would be
performed along with the transaction based on Algorithm 2:

Tother_slot = Tmemory + Ttransfer + TGC (8)

In Equations 7 and 8, TGC = 0 if either (1) the transaction
being considered is a read, or (2) there are no pending garbage
collection operations. Otherwise, TGC is estimated as:

TGC =

GCM∑
i=1

(2Ttransfer + T
read
memory + T

write
memory) + T

erase
memory (9)

In this equation, GCM stands for GCMigrationCount, which
is the number of page migrations that should be performed
along with the transaction in the write slot to fairly distribute
the interference due to garbage collection (Section 3.4). Re-
call from Section 2.1 that for many SSDs, such as those that
use NAND flash memory, garbage collection occurs at the
granularity of a block. A block that is selected for garbage
collection may still contain a small number of valid pages,
which must be moved to a new block before the selected block
can be erased. For each valid page, this requires the SSD to
(1) execute a read command on the memory chip containing

the old physical page (which takes Treadmemory time), (2) two data

transfers between the back end and the front end for GC read
and write operations (2Ttransfer), and (3) execute a write com-
mand on the memory chip containing the new physical page
(Twritememory). Hence, for each page migration, we add the time

required to perform these four steps. If all GC page migrations
from a block are finished, FLIN adds in the time required to
perform the erase operation on the block (Terasememory).

FLIN determines the number of GC page movements (GCM)
that should be executed ahead of a write transaction gener-
ated by flow f , based on the fraction of all garbage collection
operations that were were previously caused by the flow. The
key insight is to choose a GCM value that distributes a larger
number of GC operations to a flow that is responsible for
causing more GC operations. FLIN estimates GCM by deter-
mining (1) the fraction of all writes that were generated by
flow f , since write operations lead to garbage collection (see
Section 2.1); and (2) the fraction of valid pages that belong to
flow f in a block that is selected for garbage collection (which

FLIN approximates by using the fraction of all currently-valid
pages in the SSD that were written by flow f), since each valid
page in the selected block requires a GC operation:

GCM =
NumWritesf∑
i NumWritesi

× Validf∑
i Validi

× lengthGC–RDQ (10)

where NumWritesf is the number of write operations per-

formed by flow f since the last garbage collection operation,
Validf is the number of valid pages in the SSD for flow f

(which is determined using the history of valid pages that is
maintained by the FTL page management mechanism [10,13]),
and lengthGC–RDQ is the number of queued garbage collec-
tion read transactions (which represents the total number of
pending garbage collection migrations).

While FLIN can use fine-grained data separation techniques
proposed for multi-stream SSDs [41] for more accurate GC
cost estimation, we find that our estimates from Equation 10
are accurate enough for our purposes.

5.5. Implementation Overhead and Costs
FLIN can be implemented in the firmware of a modern

SSD, and does not require specialized hardware. The re-
quirements of FLIN are very modest compared to the pro-
cessing power and DRAM capacity of a modern SSD con-
troller [10–12, 14, 33, 37, 57–61, 104]. FLIN does not interfere
with any SSD management tasks [10], such as the GC candi-
date block selection policy [23,53,107], the address translation
scheme, or other FTL maintenance and reliability enhance-
ment tasks, and hence it can be adopted independently of SSD
management tasks.

DRAM Overhead. FLIN requires only a small amount of
space within the in-SSD DRAM to store four pieces of informa-
tion that are not kept by existing MQ-SSD schedulers: (1) the
read and write arrival rates of each flow in the last interval
(Section 5.1), which requires a total of 2 × #flows × #chips 32-
bit words; (2) the alone wait time of each transaction waiting
in the chip-level queues (Section 5.2), which requires a total
of max_transactions 32-bit words; (3) the average slowdown
of all high-intensity flows in each queue (Section 4.1, Step 3),
which requires 2 × #flows × #chips 32-bit words; (4) the GC
cost estimation data (i.e., Countiwrite and Validi; Section 5.4),
which requires 2 × #flows 32 bit variables. For an SSD that
has 64 flash chips and 2GB of DRAM [61] (resulting in a very
conservative maximum of 262,144 8 kB transactions that the
DRAM can hold), and that supports a maximum of 128 con-
current flows [30,32,33,65,66,87,103,104,110,111], the DRAM
overhead of FLIN is 1.13MB, which is less than 0.06% of the
total DRAM capacity.

Latency Impact. ReorderForFairness is the most time-
consuming function of FLIN, as it performs two passes over the
queue each time. Using our evaluation platform (see Section 6)
to model a modern SSD controller with a 500MHz multicore
processor [61], we find that ReorderForFairness incurs a
worst-case and average latency overhead of 0.5% and 0.0007%,
respectively, over a state-of-the-art out-of-order transaction
scheduling unit [37]. None of the FLIN functions, including
ReorderForFairness, execute on the critical path of trans-
action processing. Hence, the maximum data throughput of
FLIN is identical to the baseline.

6. Methodology
Simulation Setup. For our model-based evaluations, we

use MQSim [101], an open-source MQ-SSD simulator that

405

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

accurately models all of the major front-end and back-end
components in a modern MQ-SSD. We have open-sourced our
implementation of FLIN [1] to foster research into fairness in
modern SSDs. Table 1 shows the configuration that we use to
model a representative MQ-SSD system in our evaluations. In

our evaluation, FLIN uses αread
c =32MB/s, αwrite

c =256 kB/s,
Fthr = 0.6, and GCFLIN = 1K.

Table 1: Configuration of the simulated SSD.

SSD Organization
Host interface: PCIe 3.0 (NVMe 1.2)

User capacity: 480GB

8 channels, 4 dies-per-channel

Flash Communication ONFI 3.1 (NV-DDR2)

Interface Width: 8 bit, Rate: 333MT/s

Flash
Microarchitecture

8 KiB page, 448 B metadata-per-page, 256
pages-per-block, 4096 blocks-per-plane, 2
planes-per-die

Flash Latencies [63]
Read latency: 75 µs, Program
latency: 1300 µs, Erase latency: 3.8ms

Workloads. We study a diverse set of storage traces col-
lected from real enterprise and datacenter workloads, which
are listed in Table 2 [7, 68, 69, 80]. We categorize these work-
loads as low-interference or high-interference, based on the
average flash chip busy time, which captures the combined
effect of all four types of interference. We find that a work-
load interferes highly with other workloads if it keeps all of
the flash chips busy for more than 8% of its total execution
time. We form MQ-SSD workloads using randomly-selected
combinations of four low- and high-interference traces. We
classify each workload based on the fraction of storage traces
that are high-interference.
Metrics. We use four key metrics in our evaluations. The

first metric, F , is strict fairness [22, 70, 73, 74], which we cal-
culate using Eq. 2. The second metric, SMax , is the maximum
slowdown [17, 49, 50, 109] among all concurrently-running
flows. The third metric, STDEV , is the standard deviation of
the slowdowns of all concurrently-running flows. The fourth
metric,WS, measures the weighted speedup [93] of MQ-SSD’s
response time (RT), which represents the overall efficiency of
the I/O scheduler for all concurrent flows. Weighted speedup
is calculated as:

WS =
∑
i

RTalonei

RTsharedi

(11)

where RTalonei is the average response time of transactions

from flow i when the flow is run alone, and RTsharedi is the
average response time when the flow runs concurrently with
other flows.

7. Evaluation
We compare FLIN to two state-of-the-art baselines. Our first

baseline (Sprinkler) uses three state-of-the-art scheduling
techniques: (1) Sprinkler for out-of-order transaction schedul-
ing in the TSU [37], (2) semi-preemptive GC execution [52],
and (3) read prioritization and write/erase suspension [112].
Our second baseline (Sprinkler+Fairness) combines Sprin-
kler with a state-of-the-art in-controller MQ-SSD fairness
control mechanism [36].

7.1. Fairness and Performance of FLIN
Figures 10, 11, and 12 compare the fairness, maximum

slowdown, and STDEV, respectively, of FLIN against the two

Table 2: Characteristics of the evaluated I/O traces.

Trace
Read Average Avg. Inter Interference
Ratio Size (kB) Arrival (ms) Probability

RD WR RD WR

dev [69] 0.68 21.4 31.5 4.1 6.1 Low
exch [68] 0.66 9.7 14.8 1.0 1.3 High
fin1 [7] 0.23 2.3 3.7 14.3 6.4 Low
fin2 [7] 0.82 2.3 2.9 11.1 10.8 Low
msncfs [69] 0.74 8.7 12.6 6.2 1.0 Low
msnfs [69] 0.67 10.7 11.2 0.9 0.4 High
prn-0 [80] 0.11 22.8 9.7 34.2 117.2 Low
prn-1 [80] 0.75 22.5 11.7 30 126.7 Low
prxy-0 [80] 0.03 8.3 4.6 9.1 49.4 Low
prxy-1 [80] 0.65 24.6 26.1 3.7 3.4 Low
rad-be [69] 0.18 106.2 11.7 3.6 13.5 Low
rad-ps [69] 0.10 10.3 8.2 54.2 21.5 Low
src1-0 [80] 0.56 36.2 52.0 11.8 21.7 High
src1-1 [80] 0.95 35.8 14.7 3.2 213.9 High
src1-2 [80] 0.25 19.1 32.5 56.5 405.6 Low
stg-0 [80] 0.15 24.9 9.2 4.6 350.3 Low
stg-1 [80] 0.64 59.5 7.9 7.4 746.2 Low
tpcc [68] 0.65 8.1 9.4 0.1 0.1 High
tpce [68] 0.92 8.0 12.6 0.1 0.1 High
wsrch [7] 0.99 15.1 8.6 3.0 1.2 Low

baselines. For workload mixes comprised of 25%, 50%, 75%,
and 100% high-interference flows, FLIN improves the aver-
age fairness by 1.8x/1.3x, 2.5x/1.6x, 5.6x/2.4x, and 54x/3.2x,
respectively, compared to Sprinkler/Sprinkler+Fairness
(Figure 10). For the same workload mixes, FLIN reduces the
average maximum slowdown of the concurrently-running
flows by 24x/2.3x, 1400x/5.5x, 3231x/12.x, and 1597x/18x,
respectively (Figure 11), and reduces the STDEV of the
slowdown of concurrently-running flows by an average
of 137x/13x, 7504x/15x, 2784x/15x, and 2850x/21.5x (Fig-
ure 12). We make four key observations from the three
figures. First, Sprinkler’s fairness decreases significantly
as the fraction of high-interference flows in a workload in-
creases, and approaches zero in workloads with 100% high-
interference flows. Second, Sprinkler+Fairness improves
fairness over Sprinkler due to its inclusion of fairness con-
trol, but Sprinkler+Fairness does not consider all sources
of interference, and therefore has a much lower fairness than
FLIN. Third, across all of our workloads, no flow has a max-
imum slowdown greater than 80x under FLIN, even though
there are several flows that have maximum slowdowns over
500x with Sprinkler and Sprinkler+Fairness. This indi-
cates that FLIN provides significantly better fairness over both
baseline schedulers. Fourth, across all of our workloads, the
STDEV of the slowdown is always lower than 10 with FLIN,
while it ranges between 100 and 1000 for many flows under
the baseline schedulers. This means that FLIN distributes
the impact of interference more fairly across each flow in
the workload. We conclude that FLIN’s slowdown manage-
ment scheme effectively improves MQ-SSD fairness over both
state-of-the-art baselines.

Figure 13 compares the weighted speedup of FLIN
against the two baselines. We observe from the fig-
ure that for 25%, 50%, 75%, and 100% high-interference
workload mixes, FLIN improves the weighted speedup by
38%/21%, 74%/32%, 132%/41%, and 156%/76%, on average, over
Sprinkler/Sprinkler+Fairness. The improvement is a re-
sult of FLIN’s fairness control mechanism, which removes
performance bottlenecks resulting from high unfairness. FLIN

406

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

0.0

0.2

0.4

0.6

0.8

1.0

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

F
ai

rn
es

s
(L

ar
ge

r
is

 B
et

te
r)

25% High-Interference

0.0

0.2

0.4

0.6

0.8

1.0

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

50% High-Interference

0.0

0.2

0.4

0.6

0.8

1.0

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

75% High-Interference

0.0

0.2

0.4

0.6

0.8

1.0

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG
0.0

0.2

0.4

0.6

0.8

1.0

100% High-Interference

Figure 10: Fairness of FLIN vs. baseline schedulers.

 1

 10

 100

 1000

 10000

 100000

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

M
ax

im
um

 S
lo

w
do

w
n

(S
m

al
le

r
is

 B
et

te
r)

25% High-Interference

 1

 10

 100

 1000

 10000

 100000

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

50% High-Interference

 1

 10

 100

 1000

 10000

 100000

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

75% High-Interference

 1

 10

 100

 1000

 10000

 100000

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG
 1

 10

 100

 1000

 10000

 100000

100% High-Interference

Figure 11: Maximum slowdown of FLIN vs. baseline schedulers.

 1

 10

 100

 1000

 10000

 100000

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

S
T

D
E

V
(S

m
al

le
r

is
 B

et
te

r)

25% High-Interference

 1

 10

 100

 1000

 10000

 100000

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

50% High-Interference

 1

 10

 100

 1000

 10000

 100000

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

75% High-Interference

 1

 10

 100

 1000

 10000

 100000

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG
 1

 10

 100

 1000

 10000

 100000

100% High-Interference

Figure 12: STDEV slowdown of FLIN vs. baseline schedulers.

 0

 1

 2

 3

 4

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVGW
ei

gh
te

d
S

pe
ed

up
(L

ar
ge

r
is

 B
et

te
r)

25% High-Interference

 0

 1

 2

 3

 4

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

50% High-Interference

 0

 1

 2

 3

 4

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG

75% High-Interference

 0

 1

 2

 3

 4

M
ix1

M
ix2

M
ix3

M
ix4

M
ix5

M
ix6

M
ix7

M
ix8

M
ix9

M
ix10

AVG
 0

 1

 2

 3

 4

100% High-Interference

Figure 13: Weighted speedup of FLIN vs. baseline schedulers.

improves the performance of low-interference flows while
throttling the performance of high-interference flows, which
improves weighted speedup by enabling low-intensity flows
to make fast progress. In contrast, Sprinkler typically pri-
oritizes transactions from high-interference flows. This im-
proves the performance of high-interference flows, but penal-
izes the low-interference flows and, thus, reduces the overall
weighted speedup by causing all flows to progress relatively
slowly. Sprinkler+Fairness improves the performance of
low-interference flows by controlling the throughput of high-
interference flows, but its weighted speedup remains low
because the throughput control mechanism leaves many re-
sources idle in the SSD [89]. We conclude that FLIN’s fairness
control mechanism significantly improves weighted speedup,
an important metric for overall MQ-SSD performance, over
state-of-the-art device-level schedulers.

7.2. Effect of Different FLIN Stages
We analyze the fairness, maximum slowdown, and

weighted speedup improvements when using only (1) the
first stage of FLIN (Section 4.1), or (2) the third stage of FLIN
(Section 4.3), as these two stages are designed to reduce the
four sources of interference listed in Section 3. Figure 14
shows the fairness (left), maximum slowdown (center), and
weighted speedup of Sprinkler, Stage 1 of FLIN only, Stage 3
of FLIN only, and all three stages of FLIN. For each category,
the figure shows the average value of each metric across all
workloads in the category.

We make three observations from Figure 14. First, the indi-
vidual stages of FLIN improve both fairness and performance
over Sprinkler, as each stage works to reduce some sources

0.0

0.2

0.4

0.6

0.8

1.0

25% 50% 75% 100%

F
ai

rn
es

s

Fraction of High-Intensity

1

10

102

103

104

25% 50% 75% 100%

M
ax

 S
lo

w
do

w
n

Fraction of High-Intensity

0.0

1.0

2.0

3.0

4.0

25% 50% 75% 100%W
ei

gh
te

d
S

pe
ed

up

Fraction of High-Intensity

Sprinkler Stage 1 Stage 3 FLIN

Figure 14: Effect of Stages 1 and 3 of FLIN.

of interference among concurrently-running flows, but each
stage alone falls short of the improvements we observe when
FLIN as a whole is used. Second, the fairness and perfor-
mance improvements of Stage 1 are much higher than those
of Stage 3. This is because I/O intensity is the most dominant
source of interference. Since Stage 1 is designed to mitigate
interference due to different I/O intensities, it delivers larger
improvements than Stage 3. Third, Stage 3 reduces the max-
imum slowdown by a greater amount than Stage 1. This is
because GC operations can significantly increase the stall
time of transactions, causing a large increase in maximum
slowdown, and Stage 3 manages such GC interference effec-
tively. We conclude that Stages 1 and 3 of FLIN are effective
at mitigating different sources of interference, and that FLIN
makes effective use of both stages to maximize fairness and
performance improvements over state-of-the-art schedulers.

7.3. Sensitivity to FLIN and MQ-SSD Parameters
We evaluate the sensitivity of fairness to four of FLIN’s

parameters, as shown in Figure 15: (1) the epoch length for de-
termining I/O intensity (Section 5.1), (2) the threshold for high

read intensity (αread
C ; Section 5.1), (3) the fairness threshold for

407

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

high-intensity transaction reordering (Fthr ; Section 4.1), and
(4) the GC management threshold (GCFLIN ; Section 4.3). We
sweep the values of each parameter individually. We make
four observations from the figure. First, for epoch length,
we observe from Figure 15a that epoch lengths of 10–100ms
achieve the highest fairness, indicating that at these lengths,
FLIN can best differentiate between low-intensity and high-

intensity flows. Second, for αread
C , we observe from Figure 15b

that if αread
C is too small (e.g., below 32MB/s), fairness de-

creases, as low-intensity flows are incorrectly classified as
high-intensity flows. Third, we observe in Figure 15c that
for workloads where at least half of the flows are high inten-
sity, fairness is maximized for moderate values of Fthr (e.g.,
Fthr = 0.6). This is because if Fthr is too low, FLIN does not
prioritize the flow with the maximum slowdown very often
(see Section 4.1, Step 2b), which keeps fairness low. If Fthr is
too high, then FLIN almost always prioritizes the flow that
currently has themaximum slowdown, which causes the other
flows to stall for long periods of time, and increases their slow-
down. Fourth, we find that fairness is not highly sensitive
to the GCFLIN parameter, though smaller values of GCFLIN
provide slightly higher fairness because they cause FLIN to
defer GC operations for longer.

0.0
0.2
0.4
0.6
0.8
1.0

0.1 1 10 100 1000

F
ai

rn
es

s

Epoch Length (ms)

(a)

0.0
0.2
0.4
0.6
0.8
1.0

8 16 32 64 256

F
ai

rn
es

s

αc
read(MB/s)

(b)

0.0
0.2
0.4
0.6
0.8
1.0

0.2 0.4 0.6 0.8 1

F
ai

rn
es

s

Fthr

(c)

0.0
0.2
0.4
0.6
0.8
1.0

1K 10K 100K 1M 10M

F
ai

rn
es

s

GCFLIN

(d)

25% 50% 75% 100%

Figure 15: Fairness with FLIN configurations.

We also evaluate the sensitivity of FLIN’s fairness and per-
formance benefits to different MQ-SSD configurations. We
make three observations from these studies (not shown). First,
a larger page size decreases the number of transactions in
the back end and, therefore, reduces the probability of in-
terference. This reduces the benefits that FLIN can deliver.
Second, newer flash memory technologies have higher flash
read and write latencies [24,100], which results in an increase
in the busy time of the flash chips. This leads to a higher
probability of interference, and increases both the fairness
and performance benefits of FLIN. Third, having a larger num-
ber of memory chips reduces the interference probability, by
distributing transactions over a larger number of chip-level
queues, and thus reduces FLIN’s ability to improve fairness.

7.4. Evaluation of Support for Flow Priorities
The priority-based queue arbitration stage of FLIN supports

flow-level priorities. We evaluate FLIN’s support for flow pri-
orities in a variety of scenarios and present a representative
case study to highlight its effectiveness. Figure 16 shows the
slowdown of four msnfs flows concurrently running with
priority levels 0, 1, 2, and 3. With FLIN, we observe that
the highest-priority flow (the flow assigned priority level 3;
msnfs-3 in Figure 16) has the lowest slowdown, as the transac-
tions of this flow are assigned more than half of the scheduling
slots. The slowdown of each lower-priority version of msnfs
increases proportionally with the flow’s priority.

 0
 10
 20
 30
 40
 50

msnfs-3
msnfs-2

msnfs-1
msnfs-0

S
lo

w
do

w
n

Figure 16: Effects of varying
flow priorities.

20x

40x

60x

25% 50% 75% 100%

F
ar

in
es

s
Im

pr
ov

em
en

t

Workload Category

FLIN-NoCache
FLIN-WithCache

Figure 17: Effect of write
caching.

7.5. Effect of Write Caching
Modern MQ-SSDs employ a front end DRAM write buffer

in order to bridge the performance gap between the fast host
DRAM and the slow SSD memory chips. To investigate the
effects of write caching on fairness, we conduct a set of ex-
periments assuming a 128MB write cache per running flow
(a total of 512MB write cache). Figure 17 shows the average
fairness improvement of FLIN with and without a write buffer.
We observe that caching has only a minimal effect on FLIN’s
fairness benefits, for two reasons. First, write caching has no
immediate effect on read transactions, so both I/O intensity
and access pattern interference are not affected when write
caching is enabled. Second, high-interference flows typically
have high I/O intensity. When the write intensity of a flow
is high, the write cache fills up and cannot cache any more
requests. At this point, known as the write cliff, any write
requests that cannot be cached are directly issued to the back
end [39], eliminating the benefits of the write cache. We con-
clude that write caching has only a minimal effect on the
performance of FLIN.

8. Related Work
To our knowledge, this is the first work to (1) thoroughly

analyze the sources of interference among concurrently-
running I/O flows in MQ-SSDs; and (2) propose a new device-
level I/O scheduler for modern SSDs that effectively miti-
gates interference among concurrently-running I/O flows
to provide both high fairness and performance. Provid-
ing fairness and performance isolation among concurrently-
running I/O flows is an active area of research for modern
SSDs [2, 28, 36, 45, 46, 84, 89, 94, 120], especially for mod-
ern MQ-SSD devices that support new host–interface pro-
tocols [36, 101], such as the NVMe protocol.

Fair Disk Schedulers. Many works [3,9,34,86,95,113,116]
propose OS-level disk schedulers to meet fairness and real-
time requirements in hard drives. These approaches are not
suitable for SSDs as they (1) essentially estimate I/O access la-
tencies based on the physical structure of rotating disk drives,
which is different in SSDs; and (2) assume read/write latencies
that are orders of magnitude longer than those of SSDs [47].
More recent OS-level schedulers have evolved to better fit

the internal characteristics of SSDs [84, 89, 120]. FIOS [84]
periodically assigns an equal number of time-slices to the
running flows. The flows then trade these time-slices for
scheduling I/O requests based on the flash read/write ser-
vice time costs. BCQ [120] adopts a similar approach with a
higher accuracy in determining read/write costs. Both FIOS
and BCQ suffer from reduced responsiveness of the storage
device and reduced overall performance [89]. More precisely,
a flow that consumes its time budget early would have to
wait for other flows to finish before its budget is replenished
in the next round, leading to a period of unresponsiveness
and resource idleness [89]. FlashFQ [89] is another OS-level
scheduler that eliminates such unresponsiveness. FlashFQ
estimates the progress of each running flow based on the
cost of flash read/write operations, and allows a flow to dis-

408

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

patch I/O requests as long as its progress is not much further
ahead of other flows. If a flow’s progress is far ahead of other
concurrently-running flows, FlashFQ throttles the flow that
is far ahead to improve fairness.
FIOS, BCQ, and FlashFQ suffer from two major shortcom-

ings compared to FLIN. First, they do not have information
about the internal resources and mechanisms of an SSD, and
only speculate about resource availability and the behavior
of SSD management algorithms when making a scheduling
decision. Such speculation-based scheduling decisions can be
suboptimal for mitigating GC and parallelism interference, as
both types of interference are highly dependent on internal
SSD mechanisms. In contrast, FLIN has direct information
about the status of pending requests (in the I/O queue) and
the internal SSD resources/mechanisms. Second, OS-level
techniques have no direct control over the SSD’s internal mech-
anisms. Therefore, it is likely that there is some inter-flow
interference within the SSD, even when the OS-level scheduler
makes use of fairness control mechanisms. For example, the
TSU may execute GC activities due to a high-GC flow, which
can block the transactions of a low-GC flow. In contrast, FLIN
takes GC activities into account (e.g., Algorithm 2, which
works to minimize GC interference), and controls all major
sources of interference in an MQ-SSD.
While our goal is to design FLIN to exploit the many ad-

vantages of performing scheduling and fairness control in
the SSD instead of the OS, FLIN can also work in conjunc-
tion with OS-level I/O resource control mechanisms to exploit
the best of both worlds. For example, virtualized environ-
ments require OS-level management to control I/O requests
across multiple VMs/containers [43]. One could envision a
system where the OS and FLIN work together to perform
coordinated scheduling and fairness control. For example, the
OS could make application-/VM-aware scheduling and fair-
ness decisions, while FLIN performs resource-aware schedul-
ing/fairness decisions. We leave an exploration of coordinated
OS/FLIN mechanisms to future work.

Fair Main Memory Scheduling. There is a large collec-
tion of prior works that propose fair memory request sched-
ulers for DRAM [4,18,19,44,49,50,71–75,81,96–99,105]. These
schedulers cannot be directly used in SSDs, as DRAM devices
(1) operate at a much smaller granularity than SSDs (64 B in
DRAM vs. 8 kB in SSDs); (2) have symmetric read and write
latencies; (3) do not perform garbage collection; (4) have row
buffers in banks that significantly affect performance; and
(5) perform periodic refresh operations.

SSD Performance Isolation. Performance isolation [15,
25, 28, 29, 46, 78, 91, 94] aims to provide predictable perfor-
mance by eliminating interference from different tenants that
share an SSD. Inter-tenant interference can be reduced by
(1) assigning different hardware resources to different ten-
ants [28, 29, 46, 78, 94] (e.g., different tenants are mapped
to different channels/dies), or (2) using isolation-aware al-
gorithms for time sharing the hardware resources between
tenants [15, 25, 91, 94] (e.g., credit-based algorithms).
These techniques have three main differences from FLIN.

First, they do not provide fairness control. Instead, they re-
duce the interference between flows without considering any
fairness metric (e.g., slowdown), and do not evaluate fairness
quantitatively. Second, they are not designed to optimize
the utilization of the MQ-SSD resources, which limits their
performance. Third, no existing approach considers all four
interference sources considered by FLIN.

High-Performance Device Schedulers. The vast major-
ity of device-level I/O schedulers [20, 37, 40, 77, 90] try to
effectively exploit SSD internal parallelism with out-of-order
execution of flash transactions. These schedulers are designed
for performance, and are vulnerable to inter-flow interference.

Performance Evaluation of NVMe SSDs. A number of
prior works focus on the performance evaluation and imple-
mentation issues of MQ-SSDs [5, 114, 115]. Xu et al. [114]
analyze the performance implications of MQ-SSDs for mod-
ern database applications. Awad et al. [5] explore different
implementation aspects of NVMe via simulation, and show
how these aspects affect system performance. None of these
works consider the fairness issues in MQ-SSDs.

9. Conclusion
We propose FLIN, a lightweight transaction scheduler for

modern multi-queue SSDs (MQ-SSDs), which provides fair-
ness among concurrently-running flows. FLIN uses a three-
stage design to protect against all four major sources of
interference that exist in real MQ-SSDs, while enforcing
application-level priorities that are assigned by the host. Our
extensive evaluations show that FLIN effectively improves
both fairness and system performance compared to state-of-
the-art device-level schedulers. FLIN is simple to implement
within the SSD controller firmware, requires no additional
hardware, and consumes less than 0.06% of the storage space
available in the in-SSD DRAM. We conclude that FLIN is a
promising scheduling mechanism that enables the design of
fair and high-performance MQ-SSDs.

Acknowledgments
We thank the anonymous referees of ISCA 2018 and AS-

PLOS 2018. We thank SAFARI group members for feedback
and the stimulating research environment. We thank our
industrial partners, especially Alibaba, Google, Huawei, In-
tel, Microsoft, and VMware, for their generous support. Lois
Orosa was supported by FAPESP fellowship 2016/18929-4.

References
[1] “MQSim GitHub Repository,” https://github.com/CMU-SAFARI/MQSim.
[2] S. Ahn et al., “Improving I/O Resource Sharing of Linux Cgroup for NVMe SSDs

on Multi-Core Systems,” in HotStorage, 2016.
[3] W. G. Aref et al., “Scalable QoS-Aware Disk-Scheduling,” in IDEAS, 2002.
[4] R. Ausavarungnirun et al., “Staged Memory Scheduling: Achieving High Perfor-

mance and Scalability in Heterogeneous Systems,” in ISCA, 2012.
[5] A. Awad et al., “Non-Volatile Memory Host Controller Interface Performance

Analysis in High-Performance I/O Systems,” in ISPASS, 2015.
[6] J. Axboe, “Linux Block I/O—Present and Future,” in Ottawa Linux Symp., 2004.
[7] K. Bates and B. McNutt, “UMass Trace Repository.”
[8] M. Bjørling et al., “Linux Block IO: IntroducingMulti-Queue SSDAccess onMulti-

Core Systems,” in SYSTOR, 2013.
[9] J. Bruno et al., “Disk Scheduling with Quality of Service Guarantees,” in ICMCS,

1999.
[10] Y. Cai et al., “Error Characterization, Mitigation, and Recovery in Flash-Memory-

Based Solid-State Drives,” Proc. IEEE, 2017.
[11] Y. Cai et al., “Read Disturb Errors inMLCNAND FlashMemory: Characterization

and Mitigation,” in DSN, 2015.
[12] Y. Cai et al., “Data Retention in MLC NAND Flash Memory: Characterization,

Optimization, and Recovery,” in HPCA, 2015.
[13] Y. Cai et al., “Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitiga-

tion, and Recovery,” arXiv:1711.11427 [cs:AR], 2017.
[14] Y. Cai et al., “Neighbor-Cell Assisted Error Correction forMLCNANDFlashMem-

ories,” in SIGMETRICS, 2014.
[15] D.-W. Chang et al., “VSSD: Performance Isolation in a Solid-State Drive,” TODAES,

2015.
[16] L.-P. Chang et al., “Real-Time Garbage Collection for Flash-Memory Storage Sys-

tems of Real-Time Embedded Systems,” TECS, 2004.
[17] R. Das et al., “Application-Aware Prioritization Mechanisms for On-Chip Net-

works,” in MICRO, 2009.
[18] E. Ebrahimi et al., “Parallel Application Memory Scheduling,” in MICRO, 2011.
[19] E. Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-

Performance Fairness Substrate for Multi-Core Memory Systems,” in ASPLOS,
2010.

[20] N. Elyasi et al., “Exploiting Intra-Request Slack to Improve SSD Performance,” in
ASPLOS, 2017.

[21] G2M Research, “NVMe Market Forecast & Vendor Report Abstract,” 2017.

409

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

[22] R. Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” in
MICRO, 2006.

[23] E. Gal and S. Toledo, “Algorithms and Data Structures for Flash Memories,” CSUR,
2005.

[24] L. M. Grupp et al., “The Bleak Future of NAND Flash Memory,” in FAST, 2012.
[25] A. Gulati et al., “PARDA: Proportional Allocation of Resources for Distributed

Storage Access,” in FAST, 2009.
[26] J. Guo et al., “Parallelism and Garbage Collection Aware I/O Scheduler with Im-

proved SSD Performance,” in IPDPS, 2017.
[27] S. S. Hahn et al., “To Collect or Not to Collect: Just-in-Time Garbage Collection

for High-performance SSDs with Long Lifetimes,” in DAC, 2015.
[28] J. Huang et al., “FlashBlox: Achieving Both Performance Isolation and Uniform

Lifetime for Virtualized SSDs,” in FAST, 2017.
[29] S.-M. Huang and L.-P. Chang, “Providing SLO Compliance on NVMe SSDs

Through Parallelism Reservation,” TODAES, 2018.
[30] Huawei Technologies Co., Ltd., “Huawei ES3000 V3 NVMe SSD White Paper,”

2017.
[31] Intel Corp., “Intel Solid-State Drive DC P3600 Series, Product Specification,” 2014.
[32] Intel Corp., “Intel Solid-State Drive DC P3500 Series, Product Specification,” 2015.
[33] Intel Corp., “Intel 3D NAND SSD DC P4500 Series, Product Brief,” 2018.
[34] S. Iyer and P. Druschel, “Anticipatory Scheduling: A Disk Scheduling Framework

to Overcome Deceptive Idleness in Synchronous I/O,” in SOSP, 2001.
[35] W. Jin et al., “Interposed Proportional Sharing for a Storage Service Utility,” in

SIGMETRICS, 2004.
[36] B. Jun and D. Shin, “Workload-aware Budget Compensation Scheduling for

NVMe Solid State Drives,” in NVMSA, 2015.
[37] M. Jung and M. T. Kandemir, “Sprinkler: Maximizing Resource Utilization in

Many-chip Solid State Disks,” in HPCA, 2014.
[38] M. Jung et al., “HIOS: A Host Interface I/O Scheduler for Solid State Disks,” in

ISCA, 2014.
[39] M. Jung and M. Kandemir, “Revisiting Widely Held SSD Expectations and Re-

thinking System-Level Implications,” in SIGMETRICS, 2013.
[40] M. Jung et al., “PAQ: Physically Addressed Queuing for Resource Conflict Avoid-

ance in Solid State Disk,” in ISCA, 2012.
[41] J.-U. Kang et al., “The Multi-streamed Solid-state Drive,” in HotStorage, 2014.
[42] S. Kavalanekar et al., “Characterization of Storage Workload Traces from Produc-

tion Windows Servers,” in IISWC, 2008.
[43] H.-J. Kim et al., “NVMeDirect: A User-space I/O Framework for Application-

specific Optimization on NVMe SSD,” in HotStorage, 2016.
[44] H. Kim et al., “Bounding Memory Interference Delay in COTS-Based Multi-Core

Systems,” in RTAS, 2014.
[45] J. Kim et al., “I/O Scheduling Schemes for Better I/O Proportionality on Flash-

Based SSDs,” in MASCOTS, 2016.
[46] J. Kim et al., “Towards SLO Complying SSDs Through OPS Isolation,” in FAST,

2015.
[47] J. Kim et al., “Disk Schedulers for Solid State Drivers,” in EMSOFT, 2009.
[48] T. Y. Kim et al., “Improving Performance by Bridging the Semantic Gap Between

Multi-queue SSD and I/O Virtualization Framework,” in MSST, 2015.
[49] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling Algorithm

for Multiple Memory Controllers,” in HPCA, 2010.
[50] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in

Memory Access Behavior,” in MICRO, 2010.
[51] J. Lee et al., “Preemptible I/O Scheduling of Garbage Collection for Solid State

Drives,” TCAD, 2013.
[52] J. Lee et al., “A Semi-preemptive Garbage Collector for Solid State Drives,” in

ISPASS, 2011.
[53] Y. Li et al., “StochasticModeling of Large-Scale Solid-State Storage Systems: Anal-

ysis, Design Tradeoffs and Optimization,” in SIGMETRICS, 2013.
[54] M. Lin and S. Chen, “Efficient and Intelligent Garbage Collection Policy for NAND

Flash-based Consumer Electronics,” TCE, 2013.
[55] Linux Kernel Organization, Inc., “Block IO Priorities,” https://www.kernel.org/

doc/Documentation/block/ioprio.txt.
[56] Linux Kernel Organization, Inc., “CFQ (Complete Fairness Queueing),” https://

www.kernel.org/doc/Documentation/block/cfq-iosched.txt.
[57] Y. Luo et al., “WARM: Improving NAND Flash Memory Lifetime With Write-

Hotness Aware Retention Management,” in MSST, 2015.
[58] Y. Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling

for Modern MLC NAND Flash Memory,” JSAC, 2016.
[59] Y. Luo et al., “HeatWatch: Improving 3D NAND Flash Memory Device Reliability

by Exploiting Self-Recovery and Temperature Awareness,” in HPCA, 2018.
[60] Marvell Technology Group, Ltd., “Marvell 88NV9145 PCIe-NAND controller,”

2012.
[61] Marvell Technology Group, Ltd., “Marvell 88SS1093 Flash Memory Controller,”

2017.
[62] Micron Technology, Inc., “64Gb, 128Gb, 256Gb, 512Gb Asyn-

chronous/Synchronous NAND,” 2009.
[63] Micron Technology, Inc., “NAND Flash Memory MLC MT29F256G08CKCAB

Datasheet,” 2014.
[64] Micron Technology, Inc., “128Gb, 256Gb, 512Gb Async/Sync Enterprise NAND,”

2016.
[65] Micron Technology, Inc., “9100 U.2 and HHHL NVMe PCIe SSDs,” 2016.
[66] Micron Technology, Inc., “Micron 9200 NVMe SSDs,” 2016.
[67] Micron Technology, Inc., “MLC 128Gb to 2Tb Enterprise Async/Sync NAND,”

2016.
[68] Microsoft Corp., “Microsoft Enterprise Traces,” http://iotta.snia.org/traces/130.
[69] Microsoft Corp., “Microsoft Production Server Traces,” http://iotta.snia.org/

traces/158.
[70] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory

Service in Multi-Core Systems,” in USENIX Security, 2007.

[71] T. Moscibroda and O. Mutlu, “Distributed Order Scheduling and Its Application
to Multi-Core DRAM Controllers,” in PODC, 2008.

[72] S. P. Muralidhara et al., “Reducing Memory Interference in Multicore Systems via
Application-aware Memory Channel Partitioning,” in MICRO, 2011.

[73] O.Mutlu and T.Moscibroda, “Stall-Time FairMemoryAccess Scheduling for Chip
Multiprocessors,” in MICRO, 2007.

[74] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.

[75] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory
Systems,” SUPERFRI, 2015.

[76] J. Nagle, “On Packet Switches with Infinite Storage,” TCOM, 1985.
[77] E. H. Nam et al., “Ozone (O3): An Out-of-order Flash Memory Controller Archi-

tecture,” TC, 2011.
[78] M. Nanavati et al., “Decibel: Isolation and Sharing in Disaggregated Rack-Scale

Storage,” in NSDI, 2017.
[79] D. Narayanan et al., “Write Off-Loading: Practical Power Management for Enter-

prise Storage,” ToS, 2008.
[80] D. Narayanan et al., “Migrating Server Storage to SSDs: Analysis of Tradeoffs,” in

Eurosys, 2009.
[81] K. J. Nesbit et al., “Fair Queuing Memory Systems,” in MICRO, 2006.
[82] D. M. Nguyen et al., “Solving the Multidimensional Assignment Problem by a

Cross-Entropy Method,” JCO, 2014.
[83] NVM Express Workgroup, “NVM Express Specification, Revision 1.2,” 2014.
[84] S. Park and K. Shen, “FIOS: A Fair, Efficient Flash I/O Scheduler,” in FAST, 2012.
[85] W. P. Pierskalla, “The Multidimensional Assignment Problem,” OR, 1968.
[86] P. E. Rocha and L. C. E. Bona, “A QoS Aware Non-Work-Conserving Disk Sched-

uler,” in MSST, 2012.
[87] Samsung Electronics Co., Ltd., “Samsung SSD 960 PRO M.2, Data Sheet,” 2017.
[88] SATA-IO, “Serial ATA Revision 3.3,” http://www.sata-io.org, 2016.
[89] K. Shen and S. Park, “FlashFQ: A Fair Queueing I/O Scheduler for Flash-Based

SSDs,” in ATC, 2013.
[90] J.-Y. Shin et al., “Exploiting Internal Parallelism of Flash-based SSDs,” CAL, 2010.
[91] D. Shue et al., “Performance Isolation and Fairness for Multi-Tenant Cloud Stor-

age,” in OSDI, 2012.
[92] SK Hynix Inc., “F26 32Gb MLC NAND Flash Memory TSOP Legacy,” 2011.
[93] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simultaneous Mul-

tithreaded Processor,” in ASPLOS, 2000.
[94] X. Song et al., “Architecting Flash-Based Solid-State Drive for High-Performance

I/O Virtualization,” CAL, 2014.
[95] M. J. Stanovich et al., “Throttling On-Disk Schedulers to Meet Soft-Real-Time

Requirements,” in RTAS, 2008.
[96] L. Subramanian et al., “The Blacklisting Memory Scheduler: Achieving High Per-

formance and Fairness at Low Cost,” in ICCD, 2014.
[97] L. Subramanian et al., “BLISS: Balancing Performance, Fairness and Complexity

in Memory Access Scheduling,” TPDS, 2016.
[98] L. Subramanian et al., “MISE: Providing Performance Predictability and Improv-

ing Fairness in Shared Main Memory Systems,” in HPCA, 2013.
[99] L. Subramanian et al., “The Application Slowdown Model: Quantifying and Con-

trolling the Impact of Inter-Application Interference at Shared Caches and Main
Memory,” in MICRO, 2015.

[100] K. Suzuki and S. Swanson, “A Survey of Trends in Non-Volatile Memory Tech-
nologies: 2000-2014,” in IMW, 2015.

[101] A. Tavakkol et al., “MQSim: A Framework for Enabling Realistic Studies of Mod-
ern Multi-Queue SSD Devices,” in FAST, 2018.

[102] A. Tavakkol et al., “Performance Evaluation of Dynamic Page Allocation Strate-
gies in SSDs,” ToMPECS, 2016.

[103] Toshiba Corp., “OCZ RD400/400A Series, Product Brief,” 2016.
[104] Toshiba Corp., “PX04PMC Series, Data Sheet,” 2016.
[105] H. Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler for

Heterogeneous Systems with Hardware Accelerators,” TACO, 2016.
[106] P. Valente and F. Checconi, “High Throughput Disk Scheduling with Fair Band-

width Distribution,” TC, 2010.
[107] B. Van Houdt, “A Mean Field Model for a Class of Garbage Collection Algorithms

in Flash-based Solid State Drives,” in SIGMETRICS, 2013.
[108] B. Van Houdt, “On the Necessity of Hot and Cold Data Identification to Reduce

the Write Amplification in Flash-based SSDs,” Perform. Eval., 2014.
[109] H. Vandierendonck and A. Seznec, “Fairness Metrics for Multi-Threaded Proces-

sors,” CAL, 2011.
[110] Western Digital Technologies, Inc., “Skyhawk & Skyhawk Ultra NVMe PCIe SSD,

Data Sheet,” 2017.
[111] Western Digital Technologies, Inc., “Ultrastar SN200 Series, Data Sheet,” 2017.
[112] G. Wu and X. He, “Reducing SSD Read Latency via NAND Flash Program and

Erase Suspension,” in FAST, 2012.
[113] J. C. Wu et al., “Hierarchical Disk Sharing for Multimedia Systems,” in NOSSDAV,

2005.
[114] Q. Xu et al., “Performance Characterization of Hyper-scale Applications on

NVMe SSDs,” in SIGMETRICS, 2015.
[115] Q. Xu et al., “Performance Analysis of NVMe SSDs and their Implication on Real

World Databases,” in SYSTOR, 2015.
[116] Y. Xu and S. Jiang, “A Scheduling Framework That Makes Any Disk Schedulers

Non-Work-Conserving Solely Based on Request Characteristics,” in FAST, 2011.
[117] S. Yan et al., “Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection

Tail Latencies in NAND SSDs,” in FAST, 2017.
[118] S. Yang et al., “Split-Level I/O Scheduling,” in SOSP, 2015.
[119] J. Zhang et al., “Synthesizing Representative I/OWorkloads for TPC-H,” in HPCA,

2004.
[120] Q. Zhang et al., “An Efficient, QoS-Aware I/O Scheduler for Solid State Drive,” in

HPCC EUC, 2013.

410

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:46:40 UTC from IEEE Xplore. Restrictions apply.

