
30

FlexSig: Implementing Flexible Hardware Signatures

LOIS OROSA, ELISARDO ANTELO, and JAVIER D. BRUGUERA,
University of Santiago de Compostela

With the advent of chip multiprocessors, new techniques have been developed to make parallel programing
easier and more reliable. New parallel programing paradigms and new methods of making the execution
of programs more efficient and more reliable have been developed. Usually, these improvements require
hardware support to avoid a system slowdown.

Signatures based on Bloom filters are widely used as hardware support for parallel programing in chip
multiprocessors. Signatures are used in Transactional Memory, thread-level speculation, parallel debugging,
deterministic replay and other tools and applications. The main limitation of hardware signatures is the lack
of flexibility: if signatures are designed with a given configuration, tailored to the requirements of a specific
tool or application, it is likely that they do not fit well for other different requirements.

In this paper a new hardware signature organization, called Flexible Signatures (FlexSig), is proposed.
FlexSig can change dynamically the resources assigned to a given signature and the number of signatures
in the system, by redistributing the available hardware resources according to the system requirements.
This allows higher flexibility than with traditional fixed-resources signatures based on Bloom filters, while
maintaining a low false positive rate.

FlexSig has been evaluated by comparing it with signatures based on parallel Bloom filters, and we
conclude that FlexSig outperforms (in terms of false positive rate) conventional parallel Bloom filters in
most cases, due to its ability to use all the signature resources available.

Categories and Subject Descriptors: B.3.0 [Memory Structures]: General; C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures (Multiprocessors); C.1.4 [Processor Architectures]: Parallel
Architectures

General Terms: Design, Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Signatures, Bloom filter, scalability, flexibility, CMPs, multithreading,
transactional memory

ACM Reference Format:
Orosa, L., Antelo, E., and Bruguera, J. D. 2012. FlexSig: Implementing flexible hardware signatures. ACM
Trans. Architec. Code Optim. 8, 4, Article 30 (January 2012), 20 pages.
DOI = 10.1145/2086696.2086709 http://doi.acm.org/10.1145/2086696.2086709

1. INTRODUCTION

New parallel programming techniques are needed to take full advantage of emer-
gent multicore architectures with several cores and shared memory. Unlike sequential

This work was supported in part by the Ministry of Education and Science of Spain and FEDER funds under
contract TIN 2010-27541 and by Xunta de Galicia under contract 2010/28.
J. D. Bruguera is also with the “Centro de Investigación en Tecnologı́as de la Información (CITIUS)”,
University of Santiago de Compostela, Spain.
E. Antelo and J. D. Bruguera are members of the European Network of Excellence on High Performance and
Embedded Architecture and Compilation (HiPEAC).
Author’s addresses: L. Orosa, E. Antelo, and J. D. Bruguera, Department of Electronics and Computer Sci-
ence, University of Santiago de Compostela, Spain; email: {lois.orosa, elisardo.antelo, jd.bruguera}@usc.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART30 $10.00

DOI 10.1145/2086696.2086709 http://doi.acm.org/10.1145/2086696.2086709

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:2 L. Orosa et al.

programming, parallel programming may introduce unexpected behaviors due to the
concurrent execution of threads and due to the difficulties in understanding the low
level behavior of the architecture by programmers. Thus, programming becomes more
complicated in this environment and prone to introduce errors (data races, atomicity
violations, deadlocks, etc). In addition, these errors are usually non deterministic and,
therefore, are hard to locate, reproduce and fix. Consequently, the research community
is making a great effort to allow an easier transition to parallel programming through
the development of new programming paradigms, tools and hardware support.

Traditional low level synchronization methods based on locks can be used, but some
mechanisms for detecting and tolerating synchronization bugs have to be introduced
[Adve et al. 1991; Choi et al. 2002; Netzer and Miller 1989; Netzer and Miller 1991;
O’Callahan and Choi 2003; Prvulovic and Torrellas 2003; Yu et al. 2005; Zhou et al.
2007; Lucia et al. 2008; Ratanaworabhan et al. 2009; Muzahid et al. 2009; Tuck et al.
2008]. Alternatively, programming abstractions for shared memory multiprocessors,
such as Transactional Memory [Herlihy and Moss 1993; Ananian et al. 2005; Hammond
et al. 2004; Yen et al. 2007] or Speculative Multithreading [Ceze et al. 2006], have been
proposed to make the programming of multicore processors easier and more reliable.
However, despite the fact that these new parallel programing abstractions improve
traditional synchronization methods, they are not error free, and techniques for
detecting and tolerating concurrency bugs have to be used as well [Lev and Moir 2006].

These methods often need hardware support to improve performance. A widely used
hardware resource are signatures [Bloom 1970; Ceze et al. 2006; Ceze et al. 2007].
Signatures are a low-cost hardware resource to keep an unbounded number of memory
addresses in a fixed register space. When an address is checked for ownership, the
signature can report a false positive, but it must never report a false negative. Obvi-
ously, the larger the number of addresses inserted in the signature, the larger the false
positive rate.

Signatures are also popular in other domains, for example in network processors.
Packet classification [Chang et al. 2004] uses signatures to improve performance by re-
laxing accuracy. In keyword searching [Reynolds and Vahdat 2003] signatures are used
to determine remote set intersections. They are also used for locating and routing in
peer-to-peer location mechanisms [Rhea and Kubiatowicz 2002]. In web cache sharing
protocols [Fan et al. 2000] signatures host a summary of the URLs cached documents.

To meet the expectations of future multicore architectures, several hardware sig-
natures might be necessary. Thus, in a general purpose microprocessor, signatures
might be required in several applications, each one with very different configuration
requirements, in terms of the number of signatures and its size.

Conventional fixed-size and fixed-number signatures are very inflexible and hard
to adapt to different scenarios. For instance, conventional Transactional Memory im-
plementations need two signatures per thread, but other applications or tools could
require a different number of signatures. In addition, the size of the signature must
be chosen carefully. The depends both on the signature size and on the number of
addresses inserted; consequently, it depends on the application. A large size signature
would probably be enough for most of the applications, but it consumes significant
hardware resources. Alternatively, a small size signature needs much fewer hardware
resources, but the false positive rate could be too high for the most demanding ap-
plications. Therefore, traditional signatures overestimate the number and size of the
signatures to deal with those different requirements.

In this paper we propose a new hardware signature organization that we call Flexible
Signature (FlexSig), that can dynamically change the number and size of the signa-
tures. Hence, FlexSig can efficiently manage situations where the number of required
signatures is unknown a priori or variable.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:3

The target of FlexSig is to obtain a more flexible signature system than traditional
signatures based on Bloom filters, by using all the hardware resources independently
of the number of threads running in the system. By using a fixed signature space,
FlexSig is able to manage a high number of requests simultaneously when signatures
are highly demanded, and achieve a low rate of false positives when there are few
concurrent requests in the system.1 Additionally, it provides fault tolerance because if
some signature registers fail, FlexSig can continue operating just by invalidating the
faulty registers and redistributing the remaining registers among the threads.

For instance, in a processor with 16 cores and 1 thread per core demanding from 0 to
4 signatures each, with at least one thread requiring at least one signature, the maxi-
mum number of signatures required simultaneously is 64 (4 signatures × 16 threads),
and the minimum is 1, (only 1 thread running and it demands just 1 signature). Let
us assume that the most usual situation is to need 8 signatures simultaneously; for
example, 4 threads with 2 signatures each. Using signatures based on Bloom filters,
64 signatures of a given size (to be determined to minimize the false positives rate)
are required to properly manage the worst case. However, with FlexSig it is possible to
focus on the most common situation: a register space equivalent to 8 Bloom filters, but
with enough flexibility to keep up to 64 concurrent signatures. Of course, the larger the
number of signatures, the lower the number of registers assigned to each one. With this
configuration, FlexSig behaves efficiently for the most common case of 8 simultaneous
signatures. When only 1 signature is required, FlexSig provides a large signature with
a size 8 times larger than a regular signature. In the rare case of requiring 64 signa-
tures, FlexSig provides it anyway, but with a smaller size and, therefore, a higher false
positives rate.

FlexSig is evaluated by comparing with fixed signatures based on Bloom filters in a
Transactional Memory (TM) System. The results show that FlexSig outperforms the
fixed signatures, with significant reduction in the false positive rate, specially when
the number of threads does not match the maximum hardware threads.

There are other papers focused on improving signatures [Yen 2009; Shenghua et al.
2009; Yen et al. 2008; Almeida et al. 2007] and even to propose a scalable scheme
[Almeida et al. 2007] but, to the best of our knowledge, this is the first work focusing
on improving the flexibility of hardware signatures.

The rest of the paper is organized as follows. In Section 2, hardware signatures are
reviewed. In Sections 3 and 4, our approach to flexible signatures is presented and
some implementation issues are discussed. In Section 5, FlexSig is evaluated. Finally,
in Section 6 related work is discussed and the conclusions are summarized in Section 7.

2. BACKGROUND ON HARDWARE SIGNATURES

In this section we focus on hardware signatures, although signatures can be imple-
mented in software or hardware. Signatures are used to keep the set of addresses
generated by the different cores or threads in the system and to detect conflicts in the
memory accesses among cores/threads. Hardware signatures are composed of a m-bit
register and several hash functions where the addressed are hash-encoded and stored.

The basic operations which must be supported by a signature are: insert a new
address, check if an address is already in the signature (conflict) and clear. Due to
aliasing, a conflict may be detected in the check operation when no actual conflict exists
(false positive), but no conflicts are missed, that is, false negatives are not possible.
There are different implementations of signatures, but here we focus on signatures

1Note that we talk about concurrent signatures instead of concurrent threads, since threads do not require
signatures all the time. Therefore, the number of concurrent signatures are usually smaller than the number
of concurrent threads.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:4 L. Orosa et al.

h1 h2

110 0001

Address

hk

m bits

. . .

. . .

(a) True Bloom filter.

h1 h2

Address

hk
. . .

.0 001 . . . 0 1 . . . 00 1

m/k bits
(b) Parallel Bloom filter.

Fig. 1. Types of Bloom filters.

based on Bloom filters [Bloom 1970] because they are widely used and are the base of
FlexSig.

2.1. True Bloom Filters

Figure 1(a) shows the basic scheme of a signature based on Bloom filters [Bloom 1970].
It is composed of a m-bit register and one or more hash functions [h1 · · · hk]. This kind
of signature, which is based on a single Bloom filter, is called True Bloom signature. In
an insert operation the hash function receives an address and sets a bit in the register.
To check if an address is stored in the signature, the address is hashed and compared
with the content of the register. To clear the signature all bits of the register are set to
zero.

The most critical design decisions in a true Bloom filter are the size of the register
(m) and the number of hash functions (k). Large registers decrease the probability of a
false positive, but increase the hardware resources and power required. On the other
hand, the probability of false positives depends also on the number of hash functions
and the number of elements inserted [Sanchez et al. 2007; Bloom 1970].

The number of false positives is influenced as well by how the hash functions are
implemented. Very simple implementations are not efficient in terms of false positives.
A very popular and widely used family of hash functions is H3 [Carter and Wegman
1977; Ramakrishna et al. 1997]. H3 requires additional hardware, specifically, for n-
bit addresses a tree of n/2 two-input XOR gates for each bit of the hash function is
needed, but it achieves a better false positive rate thanks to uncorrelated and uniformly
distributed hash values.

2.2. Parallel Bloom filters

Figure 1(b) shows an improvement of the the true Bloom filters, the parallel Bloom
filters [Sanchez et al. 2007; Chang et al. 2004]. In this case, the m-bit register is split
into k m/k-bit registers, each with a hash function. In this way, each hash function
operates on different parts of the m-bit register. Hence, the Parallel Bloom filter can be
seen as k true Bloom filters with one hash function and a m/k-bit register. The insert
operation hashes the address and inserts one bit in each m/k-bit register. The advan-
tage of parallel signatures is that hash functions are simpler and are implemented
with fewer resources. Also, each of the individual Bloom filters can be single-ported,
thereby greatly reducing the hardware area/power/latency.

The false positive rate depends on the size of the signature m, the number of hash
functions k and the number of inserted addresses n. and is given by the following
expression [Sanchez et al. 2007; Chang et al. 2004]:

P = (1 − (1 − k/m)n)k

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

fa
ls

e
po

si
tiv

e
ra

te

Addresses inserted (n)

k=1
k=2
k=4
k=8

k=16

(a) False positive rate for parallel Bloom filter
with m = 1024, k = {1, 2, 4, 8, 16} and n in the x
axis.

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16 32

fa
ls

e
po

si
tiv

e
ra

te

k

n=40
n=80

n=120
n=180
n=240

(b) False positive rate for parallel Bloom filter
with m = 1024, n = {40, 80, 120, 180, 240} and
k in the x axis.

Fig. 2. False positive rate for parallel Bloom filters.

Figures 2(a) and Figure 2(b) show the false positive rate for m = 1024 and different
values of k and n. It can be seen that a large k degrades the false positive rate quickly
as the number on inserted addresses increases. The optimum value for k is between 3
and 8.

3. FLEXIBLE SIGNATURES

This section describes the FlexSig scheme. The overall organization and the strategy
for allocating signatures are described in detail and an implementation is outlined.
Moreover, the software interface and the actions to be taken in case of overflow and
hardware failure are discussed.

3.1. Overview

FlexSig is based on parallel Bloom filters (Section 2), but introducing mechanisms to
use all the resources in the signatures as much as possible and with a large flexibility to
adapt to different signature demands, allowing a better efficiency and reconfigurability.

Figure 3 shows the block diagram of FlexSig. It is composed of T Bloom filters, each
one composed of a M/T -bit register (M is the total size of the FlexSig) and a hash
function, that can host between 1 and T signatures, each signature being composed of
one or more Bloom filters. Each Bloom Filter has an identifier (ID) of the signature to
which it belongs. The number of Bloom filters assigned to each signature depends on the
number of signatures allocated. Moreover, the resources assigned to a given signature
may change dynamically with time. h1, h2, . . . , hT are independent H3 hash functions,
each operating on one register. The registers in FlexSig are usually relatively small (for
instance, 64 bits), because a signature is to be composed of several of them. Every time
FlexSig receives a request to insert a new address in one of its signatures, each hash
function assigned to the signature sets one bit in its register. On the other hand, to check
if an address is already in the signature, all the bits read by the corresponding hash
functions should be 1. Deallocation requests clear all the IDs and registers assigned to
the signature.

Each time a new signature allocation request arrives, FlexSig assigns k Bloom filters,
k ≤ T , to the new signature. Then, the k Bloom filters operate as a parallel Bloom filter
inside FlexSig. The number of Bloom filters assigned depends on the current resource
availability, that is, on the already allocated Bloom filters to previous signatures. If the
hardware resources in FlexSig are fully used by previous signatures, FlexSig have to
free several Bloom filters, already assigned, to allocate the new signature. This means
that FlexSig has to reduce dynamically the size of any signature by releasing Bloom

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:6 L. Orosa et al.

. . .0 0 0

hT

. . .0 0

h4

0

FREE

0 . . . 0. . .

h h h1 2 3

1 . . . 1 0 000

. . .

. 00 01

ID1

(Address, ID1)

IDx
M/T bits

No operation performed

hT−1

Fig. 3. Block diagram of FlexSig. Each allocated signature in FlexSig has a variable number of hash
functions k between 1 and T , depending on the number of signatures allocated concurrently. Each signature
is identified with an ID. The total register space assigned to each signature is m = k ∗ M/T bits.

1

...

Reg

Reg

Reg

ID

ID

ID

FLEXIBLE SIGNATURE MODULE

Request

h1

1

h2

control

Controller
addrs

Insert

Check

Clear

0

hT

 : hash functions (there is T hash functions)h x

by one register and one hash
 : we call Bloom Filter to the set composed

Reg

Bloom Filter

ID : identifier of the owner. Is composed by thID that identifies
the thread, and by sID that identifies different signatures with
the same thID

Controller : implements the FlexSig logic

T : number of Bloom Filters

 : one register per hash (T registers)

Fig. 4. FlexSig module architecture.

filters. In this case, the false positive rate may increase, but false negatives are never
produced.

Figure 4 shows the FlexSig module architecture. As said before, there are T Bloom
filters, each one composed of a register and a hash function. Attached to each register
there is a thread identifier (thID) and a signature identifier (sID), used to identify the
registers assigned to a given signature. Therefore, thID and sID are log2(num threads)-
bit and log2(max sigs per thread)-bit wide, respectively. Both thID and sID form the
signature owner identifier (ID)

The minimum number of Bloom filters per signature in FlexSig is T/num
max concurrent sigs (the Bloom filters are distributed equally among signatures), and
the maximum size is T (when only one signature is allocated).

The controller implements the allocation algorithm and the rest of functions needed
for the correct operation of FlexSig. The complexity and efficiency of the controller
depends on the algorithm to allocate and to free signature registers.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:7

ids register hash

ID1

ID2

ID3

ID2

ID3

ID1

ID1

ID1

ids register hash

ID1

ID2

ID3

ID2

ID3

ID1

ID1

ID1

FlexSig

check(addr,ID1)

ids register hash

ID1

ID2

ID3

ID2

ID3

ID1

ID1

ID1

FlexSig

deallocate(ID1)

FlexSig

insert(addr,ID1)

Fig. 5. Insertion, check and deallocation request in FlexSig.

Figure 5 shows how to perform the insertion, check and deallocation requests. The
insertion request must include the ID for the signature, so that the address is only
inserted in the registers that matches this ID. The check operation is very similar to
the insertion operation, but it is read-only. The deallocation consists of clearing the
registers and IDs.

3.2. Allocation Algorithm

The allocation algorithm is required to make room for a new signature and to free
the space occupied by a signature once it is not needed anymore. This algorithm may
be very complicated, for example, by defining priorities to assign more or less Bloom
filters depending on the requirements of the allocated signature. In this work we show
a simple allocation algorithm with no priorities. The algorithm with priorities requires
a deep study of the design space (number of priorities, resources assignment depending
on the priority, etc) to have an efficient implementation, and it will be developed in a
future work.

To perform the description of the allocation algorithm, the following parameters are
defined.

—n sig: Number of signatures allocated in FlexSig.
—n reg f ree: number of free Bloom filters in FlexSig.
—n to f ree: number of Bloom filters to be freed by the allocation algorithm.

Three different situations are possible when a thread tries to reserve space for a new
signature in FlexSig: (1) FlexSig is empty, (2) FlexSig is full, or (3) FlexSig is partially
full.

(1) FlexSig is empty (n sig = 0, n reg f ree = T). All the resources of FlexSig are
assigned to the new signature. This is one of the basic principles of FlexSig: if there
are free resources, take as much as possible.

(2) FlexSig is full (n sig = T , n reg f ree = 0). The controller must free space in FlexSig
when it is necessary to allocate a new signature. Then, the other signatures in
FlexSig are made smaller by reducing the number of Bloom filters per signature.
The release of one or several Bloom filters assigned to a given signature may
increase the false positive rate but false negatives are never produced, because all
the hash functions are independent and all the registers in a signature have the
information corresponding to every address inserted.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:8 L. Orosa et al.

ID1 ID2 ID3

insert(ID4)

N
um

be
r

of
 B

lo
om

 F
il

te
rs

Number of Signatures

Bloom Filters that FlexSig choose to free and assign to the new Signature

Allocated Bloom Filters

(free resources) (assign to the NEW ID4 signature)

ID1 ID2 ID3 ID4ID1 ID2 ID3

Fig. 6. Example of the allocation algorithm when FlexSig is full (example for T = 16).

The number of Bloom filters to free is given by

n to f ree =
⌊

T
(n sig + 1)

⌋
(1)

The free filters are assigned to the new signature. Therefore, the filters are redis-
tributed equally among all the signatures including the new one.
Figure 6 illustrates an example of the allocation algorithm in a FlexSig module
composed of 16 Bloom filters. Initially, there are 3 signatures allocated, one of them
has 6 filters assigned and the other has 5 filters. When a new signature is allocated,
n to f ree = 4, and the controller clears filters and tries to assign the same number
of filters to every signature.

(3) FlexSig is partially full. The controller must decide whether the free resources
are enough to allocate a new signature or if additional resources are needed. In
the latter case, some filters should be freed and assigned to the new signature. If
n reg f ree < n to f ree, the controller frees (n to f ree − n reg f ree) Bloom filters
as explained for the case when FlexSig is full. On the other hand if n reg f ree ≥
n to f ree all the available Bloom filters are assigned to the new signature.

3.3. Influence of the Bloom Filters Release on the False Positive Rate

As said before, when a new signature is needed and there is not room to host it, the
controller must free some Bloom filters assigned to other signatures and assign them
to the new signature. But, how does this affect the false positive rate?

The probability of a false positive is P = (1 − (1 − k/m)n)k (see section 2.2), being m
the number of bits of the signature, k the number of registers or hash functions, and
n the number of elements inserted in the signature. In FlexSig, the relation m/k is
constant. When the number of Bloom filters assigned to a signature is reduced, m and
k are reduced in the same proportion.

Let us illustrate this influence with an example. Figure 7 shows the variation of the
false positive rate when the resources allocated to a given signature are reduced: as an
instance, assume that initially the signature is composed of k = 16 filters with a total
register size of m = 2048 and it is reduced to k = 8 filters with m = 1024. If the number
of addresses inserted in the signature, n, is low, the reduction in signature size has no
practial influence on the false positive rate. However, if n is large the false positive rate
increase significantly.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350

fa
ls

e
po

si
tiv

e
ra

te

Addresses inserted (n)

k=4,m = 512 bits
k=8, m = 1024 bits

k=16, m = 2048 bits

Fig. 7. False positive rate in FlexSig for different signature sizes.

3.4. Software Interface

To provide a basic software interface to FlexSig, the following instruction set extensions
should be added.

—Allocate(ID): allocate the signature with identifier ID. The size of the allocated sig-
nature is defined by the controller.

—Deallocate(ID): deallocate the signature with identifier ID.
—Insert(addr, ID): insert the address addr in the signature with identifier ID.
—Check(addr, ID): check if address addr was inserted previously in the signature with

identifier ID.

This basic instruction set extension allows the proper interface to the basic operations
of the module. Moreover, the instruction set can be extended with new instructions for
specific purposes. For instance, to support Transactional Memory, it can be extended
with functionalities to forward signatures to cores, etc.

3.5. Register Grouping

In the case of just one or few signatures allocated in FlexSig, the number of Bloom
filter elements per signature is high, i.e., equivalent to having a high value of k in con-
ventional parallel Bloom filters. However, as we learned from Figure 2(b), the optimum
value of k, in terms of the false positive rate, is low (between 3 and 8 for the parameters
used in Figure 2(b)). To reduce the false positive rate in these cases, FlexSig can group
several Bloom filters so that only one is used at a time in operations that involve hash
functions (insert and check). A simple implementation consists of selecting the Bloom
filter of the group based on the value of a few least significant bits of the address
involved in the operation. Figure 8 illustrates the grouping scheme for groups of two
elements.

Grouping can be implemented in a static or dynamic way. For a static implementa-
tion, the grouping size is chosen before the first allocation, and only can change when
the FlexSig is totally empty. This forces all signatures to have the same grouping size
and simplify the implementation. If it is implemented dynamically, the grouping size is
chosen for each signature when is allocated, depending on the number of Bloom filters

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:10 L. Orosa et al.

. . .0 0 0

hT

. . . 00 1

hT−1

. . .0 0 0 . . .

h3h2h1

n bits

. . . 00

h4

. . . 001

n_group= n * 2 bits
ID1

(Address, ID1)

. . . 0 01 0

No operation performed

Fig. 8. Example of register grouping, for the case of only one signature allocated and grouping of two
elements.

assigned to it. This complicates the logic and can cause other problems with many
corner cases. Because of that, we chose to implement static grouping in our evaluation.

The maximum level of grouping is a design decision for FlexSig. The specific grouping
for each application can be established through the software interface. For the case of
our benchmarks (see Section 5.3) with up to 16 threads, we determined that a maximum
grouping of two elements is enough to achieve good results. Moreover, this grouping is
activated only for applications configured to run with two and four threads.

3.6. FlexSig Overflow and Fault Tolerance

FlexSig allows to host several signatures at the same time. However, a situation of
overflow may be produced in exceptional (low probability) cases when a new allocation
request arrives, and the controller can not free any Bloom filter because FlexSig hits
the maximum number of signatures allowed (when the software tries to allocate more
signatures than the total number of Bloom Filters available). In this case, the situation
is managed by software, as it is done, for instance, for conventional signatures in
Transactional Memory implementations.

In the case that an application allocates signatures, but fails to deallocate them (due
to a software bug or fault), FlexSig will have fewer resources to allocate new signatures
for the remaining running application time (similar to the memory leak problem).
This case is very hard to manage in hardware, and therefore it should be handled by
software. As an instance, a straightforward scheme for Transactional Memory is to
clear FlexSig when serial code is executing or when no transactions are running in the
system.

FlexSig has nice fault tolerant properties regarding the storage of the signatures due
to its flexibility. If one register fails (permanent or soft error detected with standard
fault detection techniques), such register is marked as invalid if the error is permanent
(not used any more) or freed if it is a soft error (it can be used in new signature alloca-
tions). Moreover, regarding permanent faults, only stuck-at-zero faults would lead to
the invalidation of a register (stuck-at-one faults only increase the false positive rate).
No special operations are needed for managing this situation, as the only implication
of loosing one Bloom filter is to increase the false positive rate. Of course, an exception
is raised if the failing Bloom filter is the only one assigned to the signature.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:11

addrs ids type

finite−state machine (FSM)

request issue
logic

allocate

...

Request

Input queue

...

1

ids type

P

ids type

execution execution

insert/check/deallocate

logic for request logic for request

addrs addrs

Parallel Controller

Fig. 9. Parallel controller implementation.

4. IMPLEMENTATION ISSUES

The FlexSig system can be placed in each core or as a centralized resource attached
to the chip interconnection network. The flexibility of FlexSig is achieved at the cost
of extra logic compared with conventional parallel Bloom filters. In this sense, a key
element is the FlexSig controller, which should support the functionality of FlexSig
with a simple architecture to reduce power an area overhead.

The controller needs one queue for the incoming requests, because the requests are
served sequentially. There are four types of request, Allocate, Deallocate, Check and
Insert, each with an ID that the controller uses to take action on the corresponding
registers. To implement efficiently the straightforward allocation algorithm described
in Section 3.2, some extra registers are needed in the controller to take fast decisions
for the allocation operation. There are T log2(T)-bit counters in the controller to count
the number of registers of FlexSig allocated by the corresponding ID. There is also a
counter that keeps track of empty records. Using this stored information a finite-state
machine performs the allocation operations.

For implementations using a centralized FlexSig for all cores, the module might be
a bottleneck. After analyzing the concurrency of the possible arriving requests, we
determined that the controller can serve some of them in parallel.

—Insert: It can be executed in parallel with other inserts, checks or deallocates with
different IDs.

—Check: It can be executed in parallel with other inserts and deallocates with different
IDs and with other checks with any ID.

—Allocate: It can not be executed in parallel with other requests.
—Deallocate: It can be executed in parallel with deallocates, inserts and checks with

different ID.

Taking into account these rules, the controller can be parallelized in several ways.
Figure 9 shows a simple parallel controller proposal. This controller may perform up
to P operations in parallel. Basically it is an in-order issue superscalar engine. The

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:12 L. Orosa et al.

incoming requests are placed in an input queue. The issue logic determines up to P
requests to be issued in parallel, following the rules listed above. We have one finite-
state machine (and the corresponding counters) to execute the allocate requests, and
P very simple circuits to process inserts, checks or deallocates.

Most of the time, the finite-state machine has the calculations ready when a new
allocate request arrives, because it recalculates these parameters immediately after the
previous allocate or deallocate request. Only when two consecutive allocate requests
arrive, the finite-state machine has no time to recalculate the parameters before the
second request, incurring in some additional delay.

5. EVALUATION IN A TRANSACTIONAL MEMORY SYSTEM

The aim of the evaluation is to show the effectiveness of the FlexSig system with
respect to conventional parallel Bloom filters. In this work we concentrate on Trans-
actional Memory applications, since for many Transactional Memory implementations
signatures are a key element. Transactional Memory uses signatures to detect con-
flicts among transactions. Each transaction inserts in signatures its reads and writes to
maintain a summary of its read/write set. Conflicts with other transactions reads/writes
are detected through the check operation. Since our purpose is evaluate only signatures,
our figures of merit are in terms of false positive rates. A higher the false positive
rate degrades performance, because for each false positive, the Transactional Memory
system has to do an unnecessary abort (rollback to the initial state and restart the
transaction).

To evaluate FlexSig, we use unified signatures (see Section 5.1), so we only need one
signature per transaction for the read and write set, which allows us to implement the
simple allocation algorithm described in Section 3.2. The results we obtained with our
experimental setup (see below) using separate signatures are worse, and therefore we
only report the results for unified signatures.

5.1. Unified Signatures: Simplifying FlexSig Implementation in Transactional Memory

Transactional Memory uses two signatures per transaction, one for the read set and
another one for the write set. Usually the read set is larger than the write set, and
therefore, in order to use efficiently the resources, the signature of the read set should
be larger than the signature of the write set. However, having signatures of different
sizes for the write set and the read set introduces additional difficulties in the allocation
algorithm and makes its implementation more complex. Unified signatures [Choi and
Draper 2011] propose to use only one signature for both the read set and the write set.
This approach may generate read-read conflicts, however, these conflicts rarely lead to
a performance lost [Sanyal et al. 2009; Choi and Draper 2011]. Using unified signatures
each thread only needs to allocate one signature per transaction, and the complexity
of the controller is reduced. This is the approach we have used for evaluating FlexSig.

5.2. Experimental Setup

To evaluate the FlexSig scheme we use a Transactional Memory system with signa-
tures used to track data accesses in transactions. Our aim is not to implement a fully
functional Transactional Memory system, but to work out a challenging scenario for
FlexSig, and compare it with conventional parallel Bloom filters in the same situation.
For the Transactional Memory system we use the software approach RSTM [Spear et al.
2008]. RSTM is a software Transactional Memory system that allows many different
configurations. In our evaluation we use a lazy acquisition and lazy versioning with
extendable timestamps [Riegel et al. 2007] to configure RSTM. We use PIN [keung Luk
et al. 2005] to track all transactions and memory accesses of RSTM and to emulate the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:13

Table I. Benchmark Inputs

Bench. input
genome -g128
intruder -a10 -l16 -n4096 -s1
kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16.txt
kmeans-low -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt
labyrinth -i random-x256-y256-z3-n256.txt
ssca -s14 -i1.0 -u1.0 -l9 -p9
vacation-high -n4 -q60 -u90 -r1048576 -t4096
vacation-low -n2 -q90 -u98 -r1048576 -t4096
yada -a10 -i ttimeu10000.2
streamcluster 10 20 32 4096 4096 1000
canneal 2000 2000 10.nets

Table II. Benchmark Set A, Characterization with 16 Threads

Benchmark #Tx TxTime RS WS
intruder 101780 32% 19 2
vacation-high 4096 94% 384 7
vacation-low 4096 94% 283 5
yada 14316 68% 59 17
LinkedList 175 52% 141 0.3
DList 152 55% 138 0.6
PrivList 94 81% 256 1

hardware signatures. This conforms the simulation of a Hybrid Transactional Memory
system.

We run several benchmarks over the RSTM system. Specifically, we use all the
STAMP Benchmarks [Cao Minh et al. 2008], two PARSEC Benchmarks [Bienia et al.
2008] and nine micro benchmarks (included in the RSTM distribution). Table I shows
the inputs of the benchmarks. The benchmarks not included in the table run with the
default input. For this evaluation, we classify the benchmarks in two categories. One
group is composed of benchmarks with a high false positive rate (Benchmark set A),
and the other with a modest false positive rate (Benchmark set B). The purpose of this
is to run each group of benchmarks with a different signature configuration to show
the advantages of FlexSig for workloads with different characteristics.

Tables II and III show the characterization of the benchmarks. The parameter #T x
is the number of transactions of the benchmark, T xT ime is the percentage of time
spent on transactions, and RS and W S are the average number of reads and writes
per transaction. The time spent in transactions is, in general, very significant. This
parameter is affected by the instrumentation tool, because only transactions are in-
strumented. This scenario is a pessimistic approximation, since in a real system the
time spent inside the transactions should be less, and therefore, it should be less likely
that those transactions demand signatures at the same time in the FlexSig system.
Therefore, the results should be better than in the simulated case.

5.3. Configuration

For the evaluation we use the configurations shown in Table IV. The hardware con-
figuration for parallel Bloom filters (k and m are the parameters in Figure 1(b)) was
chosen specifically to manage up to 16 threads (that is, the conventional signature
system has 16 parallel Bloom filters of fixed size). We run experiments with 2, 4, 8 and
16 threads. Two configurations are used for FlexSig: configuration conf1 uses the same
resources as their equivalent parallel Bloom filter, and conf2 uses half of the resources.
For the benchmarks belonging to the set A, the registers are of 512 bits for the unified
parallel Bloom filter (a total of 8192 bits for a 16 thread system); for FlexSig we have

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:14 L. Orosa et al.

Table III. Benchmark Set B, Characterization with 16 Threads

Benchmark #Tx TxTime RS WS
bayes 644 46% 8 2
genome 353994 76% 26 0
kmeans-high 8238 43% 13 13
kmeans-low 8557 70% 13 13
labyrinth 544 54% 84 80
ssca 93731 49% 1 2
streamcluster 592 17% 1 0
canneal 4000 44% 2 1
Counter 759 23% 1 1
HashTable 2772 47% 2 0.3
RBTree 16385 68% 18 2
RBTreeLarge 134 61% 27 3
LFUCache 62 61% 7 2
RandomGraph 53 59% 506 2

Table IV. Configuration Used with Unified Signatures

Signature Description

Unified Parallel Bloom (set B) 16 registers with k=4 and m=32 bits (512 bits total)
Unified Parallel Bloom (set A) 16 registers with k=4 and m=512 bits (8192 bits total)

Unified FlexSig conf2 (set B) 32 registers of 8 bits (256 bits total)
Unified FlexSig conf1 (set B) 64 registers of 8 bits (512 bits total)
Unified FlexSig conf2 (set A) 32 registers of 128 bits (4096 bits total)
Unified FlexSig conf1 (set A) 64 registers of 128 bits (8192 bits total)

Table V. Benchmark Set A. False Positives Comparison (in %) for Unified Signatures

Benchmark 2 threads 4 threads 8 threads 16 threads
Bloom conf2 conf1 Bloom conf2 conf1 Bloom conf2 conf1 Bloom conf2 conf1

intruder 1.5 0.0 0.0 2.0 0.2 0.0 2.4 2.4 0.2 2.9 12.0 2.7
vacation-high 38.1 3.7 0.5 37.9 13.0 3.7 38.1 38.0 24.2 38.3 52.9 38.2
vacation-low 25.3 0.8 0.0 25.3 6.0 0.8 25.4 25.3 11.1 25.2 42.5 25.1
yada 18.8 0.6 0.0 19.7 4.7 0.7 20.4 20.4 8.9 20.1 34.4 20.1
LinkedList 4.6 0.1 0.0 2.6 0.4 0.0 1.5 1.5 0.2 0.7 4.7 0.7
DList 4.0 0.1 0.0 2.9 0.5 0.0 2.0 2.0 0.2 0.7 2.9 0.7
PrivList 6.2 0.5 0.1 8.1 3.8 1.5 3.5 3.5 2.1 4.2 7.1 4.2

32 registers of 128 bits for conf2, and 64 registers of 128 bits for conf1. Similarly, for
the benchmarks belonging to the set B, the size of the registers for the unified parallel
Bloom filter is 32 bits and the corresponding FlexSig configurations conf1 and conf2
are described in Table IV. To group registers (see Section 3.5), we choose groups of one
register for 8 and 16 threads, and groups of two registers for executions with 2 and 4
threads. This decision was taken to have an efficient configuration (see Figure 2(b)).

5.4. Results

Tables V and VI show the false positive rate of FlexSig with configurations conf1 and
conf2 compared with the results obtained with parallel Bloom filters (see Table IV), for
the case of 2, 4, 8 and 16 threads. A white cell (in conf1 and conf2 columns) means that
the false positive rate is roughly the same as the one obtained with the parallel Bloom
filter, a gray cell means that the false positive rate of FlexSig is better (lower), and a
dark gray means that the false positive rate of FlexSig is worse (higher).

First, we comment the results with conf1 for both benchmark sets A and B. As
Tables V and VI show, the FlexSig-conf1 outperforms parallel Bloom filters in almost
all the cases. For 2, 4 and 8 threads, the improvement is very high; for instance, for
the case of vacation-high running with 2 threads, the false positive rate is reduced

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:15

Table VI. Benchmark Set B. False Positives Comparison (in %) for Unified Signatures

Benchmark 2 threads 4 threads 8 threads 16 threads
Bloom conf2 conf1 Bloom conf2 conf1 Bloom conf2 conf1 Bloom conf2 conf1

bayes 43.2 7.1 3.0 33.1 13.0 6.5 32.4 31.7 23.5 24.9 34.1 24.4
genome 41.8 4.8 0.7 40.7 13.6 4.6 43.3 42.0 29.2 9.7 54.4 9.4
kmeans-low 45.1 11.2 1.0 41.2 17.9 10.6 40.0 40.0 36.4 36.7 69.8 36.6
kmeans-high 40.6 7.6 0.7 37.6 16.4 8.3 36.6 36.6 33.8 37.5 66.1 37.4
labyrinth 19.0 17.9 14.7 16.7 15.8 15.6 41.9 41.9 41.6 72.2 77.3 72.2
ssca 1.1 0.0 0.0 1.1 0.1 0.0 1.2 1.1 0.0 1.2 7.7 1.1
streamcluster 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
canneal 3.3 0.0 0.0 3.2 0.0 0.0 3.5 3.5 0.5 3.3 9.6 3.1
Counter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HashTable 2.5 0.0 0.0 2.0 0.1 0.0 1.9 1.9 0.2 1.9 8.8 1.7
RBTree 49.7 16.7 8.3 53.6 30.8 19.7 46.8 46.8 40.3 44.0 50.1 44.0
RBTreeLarge 48.8 16.5 8.3 47.1 25.1 16.3 44.5 44.5 35.8 37.4 46.4 37.3
LFUCache 26.2 8.8 4.7 28.3 12.8 10.5 29.7 29.7 26.2 27.6 31.6 27.6
RandomGraph 17.9 13.4 11.8 17.0 12.7 10.7 16.6 16.6 14.4 16.9 20.3 16.9

from 38,1% to 0,5%. As the number of threads increases, the advantage of FlexSig
decreases. However, even in the worst case (16 threads), FlexSig improves with respect
to conventional Bloom filters in many cases, and never performs worse. The results are
better as fewer threads are running, because FlexSig tries to use all the resources, while
the parallel Bloom filter implementation has fixed size for each signature independently
of the number of threads. The results of FlexSig-conf1 with 16 threads are very similar
to the implementation with parallel Bloom filters since for this case all the signatures
are used. FlexSig achieves better results because not all the threads allocate signatures
at the same time, and it can use the free resources also in this case. The results are
only slightly better because the benchmarks are highly concurrent (in part due to the
instrumentation performed by PIN).

FlexSig-conf2 uses half of the resources of the parallel Bloom filter implementation.
Even with this configuration, FlexSig clearly outperforms the parallel Bloom filter im-
plementation for 2 and 4 threads. For instance, for vacation-high the false positive rate
with two threads is reduced from 38,1% to 3,7%. For the case of 8 threads, the results
are similar in both implementations, but FlexSig outperforms the parallel Bloom filter
implementation in many cases, and at least matches it. For 16 threads, FlexSig has
worse performance, but it has the flexibility to manage the 16 threads with half the
resources.

It is of interest to have an estimation of the average signature size that is used per
transaction in FlexSig. The average signature size is the weighted average in time of
the signature size, and is given by

ave sig size =
∑num changes size

e=1 sig sizee ∗ time intervale∑num changes size
e=1 time intervale

(2)

where num changes size is the number of times a signature changes its size (number of
registers) before deallocation. time interval is the number of time units that a signature
has a size sig size.

Figure 10 shows the improvement in the average signature size of FlexSig-conf1
compared with the equivalent conventional signature. This improvement is achieved
because not all the threads use signatures simultaneously, and therefore, the threads
can take resources that others threads do not use. The signature size for FlexSig de-
pends basically on the concurrent nature of the benchmark (less concurrent threads
lead to a better performance of FlexSig). In a similar way, Figure 11 shows the av-
erage signature size improvement for FlexSig-conf2 compared with the equivalent

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:16 L. Orosa et al.

 0%

 10%

 20%

 30%

 40%

 50%

in
tr

ud
er

va
ca

ti
on

−
hi

gh

va
ca

ti
on

−
lo

w

ya
da

L
in

ke
dL

is
t

D
L

is
t

P
ri

vL
is

t

ba
ye

s

ge
no

m
e

km
ea

ns
−

lo
w

km
ea

ns
−

hi
gh

la
by

ri
nt

h

ss
ca

st
re

am
cl

us
te

r

ca
nn

ea
l

C
ou

nt
er

H
as

hT
ab

le

R
B

T
re

e

R
B

T
re

eL
ar

ge

L
F

U
C

ac
he

R
an

do
m

G
ra

ph

 I
m

pr
ov

em
en

t i
n

si
ze

 o
f

th
e

S
ig

na
tu

re

2 threads
4 threads
8 threads
16 threads

Fig. 10. Increment of the average signature size in FlexSig-conf1 compared with regular signatures. The
size in FlexSig is calculated with the per transaction average size of signature.

 0%

 10%

 20%

 30%

 40%

 50%

in
tr

ud
er

va
ca

ti
on

−
hi

gh

va
ca

ti
on

−
lo

w

ya
da

L
in

ke
dL

is
t

D
L

is
t

P
ri

vL
is

t

ba
ye

s

ge
no

m
e

km
ea

ns
−

lo
w

km
ea

ns
−

hi
gh

la
by

ri
nt

h

ss
ca

st
re

am
cl

us
te

r

ca
nn

ea
l

C
ou

nt
er

H
as

hT
ab

le

R
B

T
re

e

R
B

T
re

eL
ar

ge

L
F

U
C

ac
he

R
an

do
m

G
ra

ph

 I
m

pr
ov

em
en

t i
n

si
ze

 o
f

th
e

S
ig

na
tu

re

2 threads
4 threads
8 threads
16 threads

Fig. 11. Increment of the average signature size in FlexSig-conf2 compared with regular signatures.

conventional signatures. Despite the fact that the resources are a half of the conf1, the
improvement achieved shows a similar behavior (Figure 10). The best result in terms
of FlexSig average signature size improvement is for streamcluster, with a more than
50% improvement, due to the low transaction concurrency in this benchmark. In this
case, the improvement of the signature size doesn’t imply a significant reduction of the
false positive rate because this is already very low in absolute terms.

As a conclusion, the FlexSig system improves the false positive rate when compared
with conventional parallel Bloom filters. In a system configured to run 16 threads, our

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:17

signature system clearly outperforms the parallel Bloom filter implementation when
the number of threads is lower than 16 (for the conf1 with the same resources), due
to the flexibility of FlexSig to assign the physical registers depending on the demand
(number of concurrent threads). General purpose multicore and multiprocessors are
able to run a large number of concurrent threads, but many applications use only a
few threads. FlexSig is flexible enough to provide these applications all the available
signature resources to achieve better performance. We used very hard conditions in
our evaluation to demonstrate that FlexSig can perform well even in an unfavorable
scenario. The benchmarks used are highly concurrent, which means that many trans-
actions use signatures at the same time. Moreover, because of the instrumentation
tool, the benchmarks spend more time inside transactions, increasing transactional
concurrency.

6. RELATED WORK

Most of the papers dealing with signatures are focused on improving performance,
reducing chip area or reducing the false positive rate [Sanchez et al. 2007; Quislant
et al. 2009; Yen 2009; Shenghua et al. 2009; Yen et al. 2008]. However, none of these
papers focus on flexibility and scalability. The Scalable Bloom Filters (SBF) proposed
by [Almeida et al. 2007] tries to make an approximation of scalable signatures. They
use one signature, and when a fill ratio is reached, another signature is used. SBF was
proposed to avoid the problem of oversize signatures due to the fact that the size of
the signature must be defined previously based on the number of elements to be stored
and the desired upper bound of the false positive rate. The SBF method can reduce the
specific size of the signature used. However, it may use several signatures depending
on the number of elements to be stored, and therefore, in reference to our context, the
system has to be oversized anyway (with regard to the number of signatures). FlexSig
does not fully avoid the problem of oversized signatures, but it is more flexible and
efficient in the sense that it uses as many hardware resources as possible, having a
significant effect on the false positive rate for a Transactional Memory System.

In recent publications we find Transactional Memory systems that fit very well for
using FlexSig. Mehrara et al. [2009] proposes a Software Transactional Memory system
with a centralized conflict detection mechanism (based on software signatures) placed
in one core. One way to improve this scheme would be to use FlexSig instead of their
software signatures. This would improve performance maintaining the flexibility of the
software signatures. Another example is the scheme proposed by Casper et al. [2011],
that describes a new centralized hardware outside the processor chip to accelerate
Software Transactional Memory systems. This special hardware includes signatures.
They also propose two algorithms for conflict detection, one using two signatures per
transaction and other using three signatures. FlexSig would allow to implement both
with the same hardware and also will improve performance.

The idea behind FlexSig is similar to the recent trend of incorporating a shared last
level cache in multicore systems. The cache size used by each core varies dynamically
depending on the application. This leads to a more flexible system than having a fixed
size slice of the last level cache assigned to each core. FlexSig follows this trend for a
resource that might be of interest for future multicore implementations.

7. CONCLUSIONS

In this work we propose a module for hardware signatures to improve conventional
signatures in terms of flexibility, scalability and fault tolerance. The main feature of
FlexSig is that it can host a high number of signatures for cases with applications
with a high number of threads and significant contention, and for the cases for low
contention or few threads, it can achieve a very low false positive rate.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:18 L. Orosa et al.

We described the module and its implementation, defined a detailed algorithm to
allocate signatures and evaluated FlexSig in the context of a Transactional Memory
system and compared it to an implementation with conventional parallel Bloom fil-
ters. From the evaluation performed, we show that, when the number of threads is
low, FlexSig achieves a significant improvement because of the flexibility to use all
the available resources. When the number of threads is high, the results are similar
to the conventional implementation due to the highly concurrent nature of the bench-
marks. However, with the same amount of resources, FlexSig never behave worse than
conventional parallel Bloom filters.

FlexSig makes signatures more flexible to use as a general purpose hardware re-
source, since it is able to adapt to the concurrent demand of signatures, and decouples,
to some extent, the type of benchmark from the hardware.

As future work, we will explore more complicated allocation algorithms using priori-
ties and will test the efficiency of FlexSig in other environments outside Transactional
Memory.

REFERENCES

ADVE, S. V., HILL, M. D., MILLER, B. P., AND NETZER, R. H. B. 1991. Detecting data races on weak memory sys-
tems. In Proceedings of the 18th Annual International Symposium on Computer Architecture. (ISCA ’91).
ACM, New York, NY, 234–243.

ALMEIDA, P., BAQUERO, C., PREGUICA, N., AND HUTCHISON, D. 2007. Scalable bloom filters. Infor. Process.
Lett. 101, 6, 255–261.

ANANIAN, C. S., ASANOVIC, K., KUSZMAUL, B. C., LEISERSON, C. E., AND LIE, S. 2005. Unbounded transactional
memory. In HPCA ’05: Proceedings of the 11th International Symposium on High-Performance Computer
Architecture. IEEE Computer Society, Los Alamitos, CA, 316–327.

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The parsec benchmark suite: characterization and archi-
tectural implications. In Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, (PACT ’08). ACM, New York, NY, 72–81.

BLOOM, B. H. 1970. Space/time trade-offs in hash coding with allowable errors. Comm. ACM 13, 422–426.
CAO MINH, C., CHUNG, J., KOZYRAKIS, C., AND OLUKOTUN, K. 2008. STAMP: Stanford transactional applications

for multi-processing. In IISWC ’08: Proceedings of the IEEE International Symposium on Workload
Characterization.

CARTER, J. L. AND WEGMAN, M. N. 1977. Universal classes of hash functions (extended abstract). In Proceedings
of the 9th Annual ACM Symposium on Theory of Computing, (STOC ’77). ACM, New York, NY, 106–112.

CASPER, J., OGUNTEBI, T., HONG, S., BRONSON, N. G., KOZYRAKIS, C., AND OLUKOTUN, K. 2011. Hardware acceleration
of transactional memory on commodity systems. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems, (ASPLOS ’11). ACM, New
York, NY, 27–38.

CEZE, L., TUCK, J., MONTESINOS, P., AND TORRELLAS, J. 2007. Bulksc: bulk enforcement of sequential consistency.
In Proceedings of ISCA.

CEZE, L., TUCK, J., TORRELLAS, J., AND CASCAVAL, C. 2006. Bulk disambiguation of speculative threads in
multiprocessors. In Proceedings of the 33rd Annual International Symposium on Computer Architecture.
IEEE Computer Society, 238.

CHANG, F., CHANG FENG, W., AND LI, K. 2004. Approximate caches for packet classification. In INFOCOM 2004.
Proceedings of the 23th Annual Joint Conference of the IEEE Computer and Communications Societies.
Vol. 4, 2196–2207.

CHANG, F., LI, K., AND CHANG FENG, W. 2004. Approximate caches for packet classification. In Proceedings of
INFOCOM.

CHOI, J.-D., LEE, K., LOGINOV, A., O’CALLAHAN, R., SARKAR, V., AND SRIDHARAN, M. 2002. Efficient and precise
datarace detection for multithreaded object-oriented programs. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, (PLDI ’02). ACM, New York, NY,
258–269.

CHOI, W. AND DRAPER, J. 2011. Implementation of unified signatures for transactional memory systems. In
Proceedings of the IEEE International Parallel and Distributed Processing Symposium.

FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Z. 2000. Summary cache: A scalable wide-area web cache sharing
protocol. IEEE/ACM Trans. Netw. 8, 281–293.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

FlexSig: Implementing Flexible Hardware Signatures 30:19

HAMMOND, L., WONG, V., CHEN, M., CARLSTROM, B. D., DAVIS, J. D., HERTZBERG, B., PRABHU, M. K., WIJAYA, H.,
KOZYRAKIS, C., AND OLUKOTUN, K. 2004. Transactional memory coherence and consistency. In Proceedings
of the 31st Annual International Symposium on Computer Architecture, (ISCA ’04). IEEE Computer
Society, Los Alamitos, CA, 102.

HERLIHY, M. AND MOSS, J. 1993. Transactional memory: Architectural support for lock-free data structures.
In Proceedings of the 20th Annual International Symposium on Computer Architecture. ACM, 300.

KEUNG LUK, C., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., JANAPA, V., AND HAZELWOOD,
R. K. 2005. Pin: Building customized program analysis tools with dynamic instrumentation. In Pro-
gramming Language Design and Implementation. ACM, 190–200.

LEV, Y. AND MOIR, M. 2006. Debugging with transactional memory. In Proceedings of the 1st ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware Support for Transactional Computing.

LUCIA, B., DEVIETTI, J., STRAUSS, K., AND CEZE, L. 2008. Atom-aid: Detecting and surviving atomicity violations.
In Proceedings of the 35th Annual International Symposium on Computer Architecture, (ISCA ’08). IEEE
Computer Society, Los Alamitos, CA, 277–288.

MEHRARA, M., HAO, J., HSU, P.-C., AND MAHLKE, S. 2009. Parallelizing sequential applications on commod-
ity hardware using a low-cost software transactional memory. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, (PLDI ’09). ACM, New York, NY,
166–176.

MUZAHID, A., SUÁREZ, D., QI, S., AND TORRELLAS, J. 2009. Sigrace: signature-based data race detection. In
ISCA ’09: Proceedings of the 36th Annual International Symposium on Computer Architecture. ACM,
New York, NY, 337–348.

NETZER, R. H. B. AND MILLER, B. P. 1991. Improving the accuracy of data race detection. In Proceedings of
the 3th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, (PPOPP ’91).
ACM, New York, NY, 133–144.

NETZER, R. N. AND MILLER, B. P. 1989. Detecting data races in parallel program executions. In Proceedings
of the 1990 Workshop on Advances in Languages and Compilers for Parallel Computing. MIT Press,
109–129.

O’CALLAHAN, R. AND CHOI, J.-D. 2003. Hybrid dynamic data race detection. In Proceedings of the 9th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, (PPoPP ’03). ACM, New
York, NY, 167–178.

PRVULOVIC, M. AND TORRELLAS, J. 2003. Reenact: using thread-level speculation mechanisms to debug data
races in multithreaded codes. In Proceedings of the 30th Annual International Symposium on Computer
Architecture, (ISCA ’03). ACM, New York, NY, 110–121.

QUISLANT, R., GUTIERREZ, E., PLATA, O., AND ZAPATA, E. L. 2009. Improving signatures by locality exploitation
for transactional memory. In Proceedings of the 18th International Conference on Parallel Architectures
and Compilation Techniques. IEEE Computer Society, Los Alamitos, CA, 303–312.

RAMAKRISHNA, M. V., FU, E., AND BAHCEKAPILI, E. 1997. Efficient hardware hashing functions for high perfor-
mance computers. IEEE Trans. Comput. 46, 1378–1381.

RATANAWORABHAN, P., BURTSCHER, M., KIROVSKI, D., ZORN, B., NAGPAL, R., AND PATTABIRAMAN, K. 2009. Detecting
and tolerating asymmetric races. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. ACM, New York, NY, 173–184.

REYNOLDS, P. AND VAHDAT, A. 2003. Efficient peer-to-peer keyword searching. In Proceedings of the
ACM/IFIP/USENIX International Conference on Middleware, (Middleware ’03). Springer-Verlag,
Berlin, 21–40.

RHEA, S. AND KUBIATOWICZ, J. 2002. Probabilistic location and routing. In INFOCOM 2002. Proceedings of
the 21st Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE. Vol. 3,
1248–1257.

RIEGEL, T., FETZER, C., AND FELBER, P. 2007. Time-based transactional memory with scalable time bases. In
Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms and Architectures, (SPAA ’07).
ACM, New York, NY, 221–228.

SANCHEZ, D., YEN, L., HILL, M. D., AND SANKARALINGAM, K. 2007. Implementing signatures for transactional
memory. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
(MICRO 40). IEEE Computer Society, Los Alamitos, CA, 123–133.

SANYAL, S., ROY, S., CRISTAL, A., UNSAL, O. S., AND VALERO, M. 2009. Dynamically filtering thread-local variables
in lazy-lazy hardware transactional memory. In Proceedings of the 11th IEEE International Conference
on High Performance Computing and Communications. IEEE Computer Society, Los Alamitos, CA,
171–179.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

30:20 L. Orosa et al.

SHENGHUA, Z., ZHENG, Q., YUAN, Z., AND XIAOLAN, P. 2009. A cascade hash design of bloom filter for signa-
ture detection. In Proceedings of the International Forum on Information Technology and Applications,
(IFITA ’09). Vol. 2, 559–562.

SPEAR, M. F., MICHAEL, M. M., AND VON PRAUN, C. 2008. Ringstm: scalable transactions with a single atomic in-
struction. In Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and Architectures,
(SPAA ’08). ACM, New York, NY, 275–284.

TUCK, J., AHN, W., CEZE, L., AND TORRELLAS, J. 2008. Softsig: software-exposed hardware signatures for code
analysis and optimization. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, (ASPLOS XIII). ACM, New York, NY, 145–156.

YEN, L. 2009. Signatures in transactional memory systems. Ph.D. thesis, Madison, WI.
YEN, L., BOBBA, J., MARTY, M. R., MOORE, K. E., VOLOS, H., HILL, M. D., SWIFT, M. M., AND WOOD, D. A. 2007.

Logtm-se: Decoupling hardware transactional memory from caches. In Proceedings of the IEEE 13th
International Symposium on High Performance Computer Architecture. IEEE Computer Society, Los
Alamitos, CA, 261–272.

YEN, L., DRAPER, S. C., AND HILL, M. D. 2008. Notary: Hardware techniques to enhance signatures. In
Proceedings of the 41st Annual IEEE/ACM International Symposium on Microarchitecture, (MICRO
41). IEEE Computer Society, Los Alamitos, CA, 234–245.

YU, Y., RODEHEFFER, T., AND CHEN, W. 2005. Racetrack: efficient detection of data race conditions via adaptive
tracking. In Proceedings of the 20th ACM Symposium on Operating Systems Principles, (SOSP ’05).
ACM, New York, NY, 221–234.

ZHOU, P., TEODORESCU, R., AND ZHOU, Y. 2007. Hard: Hardware-assisted lockset-based race detection. In
Proceedings of the IEEE 13th International Symposium on High Performance Computer Architecture.
IEEE Computer Society, Los Alamitos, CA, 121–132.

Received July 2011; revised October 2011; accepted November 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 30, Publication date: January 2012.

