
FIGARO: Improving System Performance

via Fine-Grained In-DRAM Data Relocation and Caching

Yaohua Wang� Lois Orosa† Xiangjun Peng�� Yang Guo� Saugata Ghose�‡ Minesh Patel†
Jeremie S. Kim† Juan Gómez Luna† Mohammad Sadrosadati§ Nika Mansouri Ghiasi† Onur Mutlu†‡

�National University of Defense Technology †ETH Zürich �Chinese University of Hong Kong
�University of Illinois at Urbana–Champaign ‡Carnegie Mellon University §Institute of Research in Fundamental Sciences

Main memory, composed of DRAM, is a performance bot-
tleneck for many applications, due to the high DRAM access
latency. In-DRAM caches work to mitigate this latency by aug-
menting regular-latency DRAM with small-but-fast regions of
DRAM that serve as a cache for the data held in the regular-
latency (i.e., slow) region of DRAM.While an effective in-DRAM
cache can allow a large fraction of memory requests to be served
from a fast DRAM region, the latency savings are often hindered
by inefficient mechanisms for migrating (i.e., relocating) copies
of data into and out of the fast regions. Existing in-DRAM
caches have two sources of inefficiency: (1) their data reloca-
tion granularity is an entire multi-kilobyte row of DRAM, even
though much of the row may never be accessed due to poor
data locality; and (2) because the relocation latency increases
with the physical distance between the slow and fast regions,
multiple fast regions are physically interleaved among slow
regions to reduce the relocation latency, resulting in increased
hardware area and manufacturing complexity.
We propose a new substrate, FIGARO, that uses existing

shared global buffers among subarrays within a DRAM bank
to provide support for in-DRAM data relocation across subar-
rays at the granularity of a single cache block. FIGARO has a
distance-independent latency within a DRAM bank, and avoids
complex modifications to DRAM (such as the interleaving of
fast and slow regions). Using FIGARO, we design a fine-grained
in-DRAM cache called FIGCache. The key idea of FIGCache is
to cache only small, frequently-accessed portions of different
DRAM rows in a designated region of DRAM. By caching only
the parts of each row that are expected to be accessed in the near
future, we can pack more of the frequently-accessed data into
FIGCache, and can benefit from additional row hits in DRAM
(i.e., accesses to an already-open row, which have a lower la-
tency than accesses to an unopened row). FIGCache provides
benefits for systems with both heterogeneous DRAM banks (i.e.,
banks with fast regions and slow regions) and conventional
homogeneous DRAM banks (i.e., banks with only slow regions).
Our evaluations across a wide variety of applications show

that FIGCache improves the average performance of a system
using DDR4 DRAM by 16.3% and reduces average DRAM energy
consumption by 7.8% for 8-core workloads, over a conventional
system without in-DRAM caching. We show that FIGCache
outperforms state-of-the-art in-DRAM caching techniques, and
that its performance gains are robust across many system and
mechanism parameters.

1. Introduction
DRAM has long been the dominant technology for main

memory systems. As many modern applications require
greater amounts of DRAM to hold increasing amounts of data,
manufacturers are increasing the capacity of DRAM chips via
manufacturing process technology scaling. However, unlike
capacity, DRAMaccess latency has not decreased significantly

for decades, as latency improvements are traded off to instead
decrease the cost-per-bit of DRAM [14, 80, 81, 106, 111, 134].
To understand why, we study the high-level organization of
a DRAM chip, as shown in Figure 1. The chip consists of
multiple DRAM banks (eight in DDR4 DRAM [52]), where
each bank is comprised of multiple homogeneous subarrays
(i.e., two-dimensional tiles) [72] of DRAM cells. Each DRAM
cell stores a bit of data in the form of charge. Reads and
writes cannot be performed directly on the cell, as the cell
holds only a limited amount of charge (in order to keep the
cell area small), and this amount is too small to drive the I/O
circuitry. Instead, a cell in a subarray is connected via a bitline
to the subarray’s local row buffer (consisting of sense ampli-
fiers) [72,82]. A local row buffer is used to sense, amplify, and
hold the contents of one row of DRAM. Each subarray has
its own local row buffer, which consumes a relatively large
area compared to a row of DRAM cells. To amortize this area
and achieve low cost-per-bit, a commodity DRAM connects
many DRAM cells to each sense amplifier on a single bitline
(e.g., 512–2048 cells per bitline). Doing so results in a long
bitline to accommodate the number of attached DRAM cells,
and a long bitline has high parasitic capacitance. Bitline ca-
pacitance has a direct impact on DRAM access latency: the
longer the bitline, the higher the parasitic capacitance, and,
thus, the longer the latency required to bring the data from a
row of DRAM cells into the local row buffer [81]. The local
row buffers in a bank are connected to a shared global row
buffer, which interfaces with the chip’s I/O drivers.

Figure 1. Logical organization of a DRAM chip.

To improve DRAM latency while maintaining low cost-per-
bit, prior works modify the DRAM organization to implement
an in-DRAM cache [15, 81, 94, 134]. Many of these works
take the approach shown in Figure 2a, where they introduce
heterogeneous subarrays into DRAM banks. In such a bank,
one type of subarray (labeled a slow subarray in the figure)
has a regular (i.e., slow) access latency and large capacity,
while a second type of subarray (labeled fast subarray) has
a low access latency but small capacity (i.e., the subarray’s
bitlines are kept short to reduce parasitic capacitance and,
thus, latency). An in-DRAM cache maintains a copy of a
subset of rows from the slow subarrays in the fast subarrays,
typically caching the hottest (i.e., most frequently accessed,
or most recently used) rows to increase the probability that

313

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00036

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

(a) State-of-the-Art
In-DRAM Cache

(b) FIGCache Using
Fast Subarrays

(c) FIGCache Using
Slow Subarrays

Figure 2. (a) State-of-the-art in-DRAM cache in a hetero-
geneous bank with many fast subarrays interleaved among
slow subarrays; (b) FIGCache in a heterogeneous bank with
fewer fast subarrays; (c) FIGCache in a conventional bank
with no fast subarrays.

a memory request can be served by the fast subarrays (i.e.,
with low latency).

Unfortunately, existing in-DRAM cache designs suffer from
the inefficient data relocation operations that copy data be-
tween the slow and fast subarrays. There are two main rea-
sons for this inefficiency. First, the data relocation granularity
is the size of an entire DRAM row. In modern DRAM, a row
contains a large amount of data (8 kB in DDR4 [52]). However,
it is difficult for an application to access the entire contents of
a row when the row is opened, as (1) the application may not
have high spatial locality [3, 4, 34, 145], and (2) interference
among multiple programs running on a multicore processor
limits data reuse from an open row [33, 35, 40, 70, 71, 84, 99,
102, 104, 110, 140, 141, 143, 144, 147, 155]. As a result, when a
row in an in-DRAM cache is opened, only a small subset of
the cached row is typically accessed before the row is evicted
from the cache. Second, there is a trade-off in current designs
between relocation latency and design complexity. The further
away a slow subarray is physically from the fast subarray,
the higher the latency that is required to perform the data
relocation. To reduce the relocation latency, many fast subar-
rays are employed and interleaved among slow subarrays (as
shown in Figure 2a), which leads to increased area overhead
(e.g., each fast subarray requires its own local row buffer and
peripheral circuitry [72, 82]) and manufacturing complexity.
To avoid these inefficiencies, we propose a new approach

to efficient data relocation support across subarrays within a
DRAM bank that uses (mostly) existing structures within a
modern DRAM device. As shown in Figure 1, all of the sub-
arrays in a bank share a single global row buffer. The global
row buffer in a bank serves to connect one column’s worth of
data from an active local row buffer in the same bank to the
I/O drivers in a chip. Across a rank of chips (i.e., a group of
chips operating in lockstep), the global row buffers of a single
bank can hold one cache line (i.e., 64 bytes) of data. We make
the key observation that the global row buffer in a DRAM
bank is interconnected with all of the local row buffers of the
subarrays in the bank. By safely relaxing some constraints in
the operation of the DRAM chip, we can use the global row
buffer to facilitate fine-grained relocation across subarrays
(i.e., copying only a single column of data in a DRAM chip,
which translates to copying a cache block in a DRAM rank).
Using this insight, we design a substrate called FIGARO. FI-

GARO operations are performed by enabling two local row
buffers to transfer data in an unaligned manner between each
other (i.e., data from one column in the source local row buffer
can be written to a different column in the destination local
row buffer) via the global row buffer, without any use of the
off-chip memory channel. By making novel use of existing
structures within DRAM, we implement FIGARO with only
modest changes to the peripheral logic within DRAM (<0.3%
chip area overhead), without any changes to the cell arrays.

Based on FIGARO, we propose a fine-grained in-DRAM
cache (FIGCache), as shown in Figure 2b. FIGCache avoids
the pitfalls of state-of-the-art in-DRAM cache designs [15,
81, 94, 134]. The key idea of FIGCache is to cache only a
portion of a DRAM row (i.e., a row segment) via FIGARO,
instead of caching an entire DRAM row at a time. This row
segment granularity based caching approach yields three ben-
efits. First, it increases the performance of in-DRAM caches,
because a single in-DRAM cache row (in the fast subarray)
can now contain small fragments of multiple DRAM rows
that are likely to be accessed before the fragment is evicted
from the cache. By significantly reducing the amount of cache
space wasted on unaccessed data, both the in-DRAM cache
hit rate and row buffer hit rate increase substantially. Sec-
ond, it simplifies the in-DRAM cache design. FIGARO has a
distance-independent relocation latency within a DRAM bank,
reducing the number of fast subarrays needed to keep the la-
tency low compared to state-of-the-art in-DRAM caches (e.g.,
FIGCache provides benefits with only two fast subarrays per
bank) and eliminating the need to interleave fast subarrays
among slow subarrays. Third, it allows in-DRAM caching
to provide potential benefit for conventional DRAM chips
that contain only slow subarrays (as shown in Figure 2c).
Even without subarrays with lower access latencies, FIGARO
allows us to use a small number of rows in a slow subarray
to contain the most frequently-accessed fragments of select
DRAM rows. This increases the row buffer hit rate signifi-
cantly, allowing a greater fraction of memory requests to be
served with the lower row hit latency (as a row already open
in a row buffer has a lower access latency than an unopened
row). As we discuss in Section 6, FIGCache can help mitigate
security attacks such as RowHammer [21, 29, 68, 69, 107, 108]
and row buffer based side channel attacks [118], in addition
to its performance benefits.

Our evaluations show that on a system with both fast sub-
arrays and slow subarrays (Figure 2b), FIGCache improves
performance by 16.3% and reduces DRAM energy by 7.8%, on
average across 20 eight-core workloads, over a conventional
system without in-DRAM caching. FIGCache outperforms a
state-of-the-art in-DRAM cache design [15], with an average
performance improvement of 4.6% for 8-core workloads. We
show that even in a system without any fast subarrays (Fig-
ure 2c), if we reserve 64 of the DRAM rows in a slow subarray
as an in-DRAM cache, FIGCache provides considerable per-
formance gain (12.5% on average). We demonstrate that the
performance benefits of FIGCache are robust across many sys-
tem and mechanism parameters (e.g., cache capacity, caching
granularity, replacement policy, hot data identification pol-
icy). We conclude that FIGCache is a robust and efficient
mechanism to reduce DRAM access latency.

We make the following contributions in this work:

• We propose FIGARO, an efficient substrate that enables fine
granularity (i.e., column granularity) data relocation across
subarrays in a memory bank, at a latency that is indepen-
dent of the distance of subarrays from each other. FIGARO

314

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

uses (mostly) existing structures in a modern DRAM chip,
with its modifications requiring <0.3% chip area overhead.

• We propose FIGCache, an efficient in-DRAM cache based
on FIGARO. FIGCache caches fragments of a DRAM row
at the granularity of a row segment, which can be as
small as a cache block. Doing so significantly improves
in-DRAM caching performance over state-of-the-art in-
DRAM caches. Unlike prior works, FIGCache can be im-
plemented in DRAM chips with both heterogeneous (i.e.,
slow and fast) subarrays and homogeneous (i.e., only slow)
subarrays.

• We comprehensively evaluate the performance and en-
ergy efficiency of FIGCache. We show that it substantially
improves both the performance and energy efficiency of
single-core and multi-core systems with DDR4 DRAM, and
that it outperforms state-of-the-art in-DRAM caches.

2. Background
We provide background about DRAM organizations and

operations to understand how FIGARO works. For more
information, we refer the readers to prior works that cover
DRAM in detail [14, 15, 16, 33, 39, 40, 41, 61, 62, 63, 65, 67, 72, 73,
74, 80, 81, 82, 88, 89, 97, 126, 127, 130, 131, 147].

DRAM Organization. A modern main memory subsys-
tem consists of one or more memory channels, where each
channel contains a memory controller that manages a ded-
icated subset of DRAM modules. The modules in a single
channel share an off-chip bus that is used to issue commands
and transfer data between DRAM modules and memory con-
troller, which typically resides in the processor. Each module
is made up of multiple DRAM chips, which are grouped into
one or more ranks. For modern x8 DRAM chips in the same
rank, there are typically 8 chips that hold data (with some
modules containing an additional chip for error-correcting
codes, or ECC [58, 98, 115, 116]). All chips belonging to the
same rank operate in lockstep (i.e., the same command is is-
sued and performed by all chips simultaneously), and one row
of DRAM cells are distributed across all of the chips within a
rank. The chips in a rank, in combination, provide 64 bytes of
data (and 8 bytes of ECC code for modules with the extra chip)
for each memory request. As Figure 1 shows, a chip is divided
into multiple banks, which can serve memory requests (i.e.,
loads or stores) in parallel and independently of each other.
Each bank typically consists of 32–64 two-dimensional arrays
of DRAM cells called subarrays [17, 72, 127, 128, 131].

In this work, we focus on data movement operations across
subarrays within a bank. Figure 3 provides more detail about
the subarray structure. Each subarray typically contains 512–
2048 rows of DRAM cells, which are connected to a local row
buffer (LRB). The LRB consists of a set of sense amplifiers
that are used to open (i.e., activate) one row at a time in the
subarray. Each vertical line of cells is connected to one sense
amplifier in the LRB via a local bitline wire. Cells within a
row share a wordline. All of the LRBs in a bank are connected
to a shared global row buffer (GRB) [15, 48, 64, 72, 101], which
is much narrower than the LRB. The GRB is connected to
the LRBs using a set of global bitlines [48, 82]. The GRB
is composed of high-gain sense amplifiers that detect and
amplify perturbations caused by a single LRB on the global
bitlines [48]. The GRB width is usually correlated with the
data output width of the chip (e.g., in an x8 data/ECC chip,
which sends 8 bits of data/ECC for each of the eight data
bursts that make up one read, the GRB is 64-bit). Since the
GRB is much narrower than an LRB, a single column (i.e., a
small number of bits; 64 in an x8 chip) of the LRB is selected

Figure 3. Detailed DRAM bank and subarray organization.

using a column decoder to connect to the GRB. The column is
chosen based on the memory address requested by the DRAM
command that is being performed.

DRAM Operations. The memory controller issues four
commands to access and update data within DRAM. First, the
memory controller activates the DRAM row containing the
data. The ACTIVATE command latches the selected DRAM
row into the LRB of the subarray that contains the row. Sec-
ond, once the activation finishes, the memory controller is-
sues a READ or WRITE command, which operates on a col-
umn of data. On a READ, one column of the LRB is selected
using the column decoder and is sent to the GRB via global
bitlines. The GRB then drives the data to the chip I/O logic,
which sends the data out of the DRAM chip to the memory
controller. While a row is activated, the memory controller
can issue subsequent READ/WRITE commands to access
other columns of data from the LRB if there are other mem-
ory requests to the same row. This is called a row buffer hit.
Finally, the controller precharges the LRB and the subarray by
issuing a PRECHARGE command to prepare all of the bitlines
for a subsequent ACTIVATE command to a different row.

The latencies of the above commands is governed by timing
parameters defined in an industry-wide standard [49, 51, 52,
72, 76, 81], which is set largely depending on the length of
local bitlines in the subarray. This is because every local
bitline has an associated parasitic capacitance whose value
is proportional to the length of the bitline. This parasitic
capacitance increases the subarray operation latencies during
ACTIVATE and PRECHARGE [81].

3. Existing In-DRAM Cache Designs
DRAM manufacturers often choose a long bitline length to

accommodate a greater number of rows (and, thus, increase
DRAM capacity) [81]. To alleviate long DRAM latencies that
result from longer bitlines, prior works propose in-DRAM
caches [15, 81, 94, 134]. The key idea of an in-DRAM cache is
to introduce heterogeneity into DRAM, where one region has
a fast access latency with short local bitline length, while the
other has bitline length and access latency same as regular
(i.e., slow) DRAM. To yield the highest performance benefits,
the fast region is used as an in-DRAM cache for hot data.
We discuss three main approaches that prior works take in
building in-DRAM caches.

Heterogeneous Subarray Based Design. Tiered-Laten-
cy (TL) DRAM [81] divides a subarray into fast (near) and slow
(far) segments that have short and long bitlines, respectively,
by adding bitline isolation transistors between the two seg-
ments. The fast segment can serve as an in-DRAM cache. A
row can be quickly copied between the two segments via the
bitlines, via a back-to-back activation operation resembling
RowClone [127]. The main disadvantage of TL-DRAM [81]
comes from the intrusive nature of the bitline isolation tran-

315

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

sistors inside the subarray. Isolation transistors are different
from the existing cell access transistors in DRAM, which are
specially designed with low leakage [94, 123]. When placed
in the middle of a subarray, isolation transistors require large
cost and can affect DRAM yield. For DRAM chips that use
the popular open-bitline architecture [60, 88, 97], TL-DRAM
increases the area overhead significantly (by 3.15%) [15]. As
a result, such isolation-transistor-based in-DRAM cache de-
signs can potentially face a relatively high barrier to adoption
by commercial DRAM vendors.

Heterogeneous BankBasedDesignWithout Data Re-
location Support. CHARM [134] introduces heterogeneity
within each bank by designing a few fast subarrays with
(1) short bitlines for faster data sensing, and (2) close place-
ment to the chip I/O for faster data transfer. Fast subarrays
maintain the same cell array structure as traditional DRAM,
leading to simple design and with little effect on DRAM yield.
To fully exploit the potential of fast subarrays, CHARM uses
an OS-based scheme to statically allocate frequently used
data to fast subarrays based on program profiling informa-
tion. The main shortcoming of CHARM is that data relocation
between fast and slow subarrays must be done through the
memory channel using the narrow global data bus of DRAM,
which incurs high latency and reduces opportunities to use
dynamic in-DRAM cache management polices that adapt to
dynamic program phase changes (and that requires more
frequent data relocation than static profiling-based policies).
This substantially limits the potential benefits of CHARM,
and makes the overall performance gain of in-DRAM cache
depend heavily on the effectiveness of the static, profiling
based cache management policy.

Heterogeneous Bank Based Design With Bulk Data
Relocation Support. By taking advantage of DRAM struc-
tures, DAS-DRAM [94] and LISA-VILLA [15] extend the func-
tionality of CHARM [134] with in-DRAM bulk data relocation
mechanisms. These mechanisms dynamically relocate data
between fast and slow subarrays without using the narrow
global data bus, enabling faster and more efficient relocation.
This allows for the efficient implementation of dynamic in-
DRAM cache management policies. Specifically, DAS-DRAM
enables DRAM row relocation across subarrays in a bank
through a row of relocation cells in each subarray. The LISA
substrate [15] (uponwhich the LISA-VILLA in-DRAMcaching
mechanism is built) further improves the relocation latency
with wide inter-subarray links, serving as a direct data relo-
cation path between especially physically-adjacent subarrays.
Unfortunately, the overall performance of state-of-the-art
in-DRAM caches is greatly limited by two characteristics of
the existing in-DRAM data relocation support.

First, the data relocation granularity is large and fixed
(i.e., an entire DRAM row is relocated at a time). Due to the
limited row buffer locality exhibited by many programs [33],
most of the in-DRAM cache hits are actually to only a small
subset of a cached DRAM row, leaving the rest of the DRAM
row untouched before the row is evicted from the cache (i.e.,
most of the row is brought into the cache without providing
any benefit). The interference among concurrently running
programs in a multicore system further hurts the row buffer
locality [33, 35, 40, 70, 71, 84, 99, 102, 104, 110, 140, 141, 143, 144,
147, 155]. Thus, caching an entire DRAM row is usually not
necessary and leads to poor utilization of the in-DRAM cache
(i.e., fast subarray) space. Note that while a cached row can
take advantage of low latencies in the fast subarray, its row
buffer hit rate does not change, as the contents of the cached

row (and therefore its locality behavior) remain the same as
the source row in the slow subarray.
Second, data relocation latency increases substantially as

the physical relocation distance increases. Each relocation
requires the relocated row to be written to each intermediate
subarray between the source subarray and the destination
subarray. As a result, the further away a slow subarray is
physically from the fast subarray, the higher the latency is for
the data relocation into and out of the in-DRAM cache. Tomit-
igate this distance-dependent latency, both DAS-DRAM and
LISA-VILLA add multiple fast subarrays into DRAM banks,
physically interleaving the fast subarrays among slow subar-
rays to reduce the average distance between a slow subarray
and its closest fast subarray. Doing so greatly increases the
area overhead (e.g., each new subarray requires additional
peripheral circuitry, such as decoders and a local row buffer)
and manufacturing complexity.
As a result, while DAS-DRAM and LISA-VILLA represent

the state-of-the-art for in-DRAM caches, their inefficiencies
significantly impact the benefits and practicality of the mech-
anisms.

4. FIGARO Substrate
To solve the inefficiencies of state-of-the-art in-DRAM

cache designs, we propose Fine-Grained In-DRAM Data Relo-
cation (FIGARO), a new substrate that enables fine granularity
data relocation across the subarrays in a bank at a distance-
independent latency. FIGARO can relocate data at the column
granularity in a bank (i.e., 64 bits in an x8 DRAM chip, which
corresponds to 64-byte cache block granularity in a rank). FI-
GARO significantly improves in-DRAM caching in two ways:
(1) it enables caching at the granularity of what we call a row
segment (consisting of one or more contiguous cache blocks),
and thus a single in-DRAM cache row can now contain row
segments from multiple DRAM rows, leading to higher cache
utilization and higher row buffer hit rates; and (2) it reduces
the need for a large number of fast subarrays per bank (e.g.,
we use only two for our default configuration in this paper),
and they no longer need to be interleaved among normal sub-
arrays, leading to low area overhead and low manufacturing
complexity.

4.1. FIGARO Design
FIGARO is built upon the key observation (as we discuss in

Section 2) that all of the private per-subarray local row buffers
(LRBs) in a bank are connected to a single shared global row
buffer (GRB). By taking advantage of this connectivity, FI-
GARO can perform column-granularity data relocation across
subarrays at a distance-independent latency, without using
the off-chip memory channel.

Transferring Data Between Two Local Row Buffers.
To relocate data, FIGARO introduces a new DRAM command,
RELOC (relocate column). Within a DRAM chip, RELOC copies
one column of data from the LRB of one subarray to the LRB
of another subarray within the same bank, via the GRB. Re-
call from Section 2 that as eight x8 data chips work together
in lockstep in a rank, the GRB across all chips is 64 bytes,
and, thus, a RELOC command in such a rank-based system
copies one cache block (i.e., 64 bytes). The RELOC command
has two parameters: (1) the source address and (2) the desti-
nation address. The source address in RELOC consists of only
the column address (since the source is an LRB containing
an already-activated row, as we describe below), while the
destination address consists of the destination subarray in-
dex (since the destination is a not-yet-active LRB), and the
corresponding column address. Note that our new command

316

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

can be easily added by using one of the undefined encodings
reserved for future use in the DRAM standard [52], similar to
new DRAM commands that have been proposed in previous
studies [15, 72, 127, 128].
Figure 4 illustrates how FIGARO relocates one column of

data from a source subarray (subarray A) to a destination
subarray (subarray B) in a DRAM chip using the RELOC com-
mand. First, the memory controller issues an ACTIVATE
command to one row in subarray A (1 in Figure 4), which
copies data from the selected row to subarray A’s local row
buffer (LRB). Second, the memory controller issues a RELOC
command. The RELOC command relocates one column of data
(A3 in Figure 4) from subarray A’s LRB to subarray B’s LRB.
To do this, RELOC selects the desired column of data from
subarray A’s LRB (column 3) using A’s column decoder (2),
which loads the column into the global row buffer (GRB; 3),
and at the same time connects the GRB to subarray B using
B’s column decoder, which places the column of data from
subarray A in the correct column (column 1) of subarray B’s
LRB (4). Multiple RELOC commands can be issued at this
point, copying multiple columns of data from the activated
source row to subarray B’s LRB. Third, the memory controller
issues an ACTIVATE command to subarray B (5), overwrit-
ing only the corresponding column in the activated row with
the new data (i.e., A3). Fourth, the memory controller issues a
PRECHARGE command to prepare the entire bank for future
accesses (not shown in the figure).

ACTIVATE RELOC ACTIVATE

1
2

34

5

Figure 4. An example of data relocation using FIGARO.

During the RELOC command, FIGARO relies on the fact
that the GRB has a higher drive strength than the LRB [48].
Therefore, when the destination LRB is connected to the GRB
(3 in Figure 4), the GRB has enough drive strength to induce
charge perturbation to the idle (i.e., precharged) bitlines of
the destination subarray, allowing the destination LRB to
sense and latch this perturbation even though we are not
activating the destination subarray. The GRB will also help
to quickly drive the corresponding local sense amplifiers and
the bitlines in the destination subarray to a stable state (either
Vdd or 0). Therefore, when the destination row is activated,
the DRAM cells connected to the bitlines in a stable state will
be overwritten, while all other cells in the row will maintain
their original values [15, 81, 127] (as seen in 5 in Figure 4).
This requires no modification to existing DRAM. Note that
for DRAM modules that contain an additional chip for ECC
information, since the data chips and ECC chip operate in
lockstep (Section 2), the corresponding ECC code is trans-
ferred together with the data during the relocation process.

Distance-Independent Latency of RELOC. The latency
of existing data relocation substrates in a DRAM bank [15,94]
is distance-dependent because these substrates perform time-

consuming sensing of intermediate local row buffers during
data relocation, as the data moves from the LRB of one sub-
array to the next. As a result, the relocation latency (and
energy) is directly dependent on the number of intermediate
local row buffer operations. Unlike existing relocation sub-
strates that use local bitlines and isolation transistors for data
movement [15, 94], the latency of RELOC comes mainly from
the sensing of the GRB and the driving of the destination
LRB, both via the global bitlines. While the latency difference
between relocation operations to different subarrays is depen-
dent on the length of global bitlines, a longer global bitline
length has a relatively small impact on the relocation latency,
as global bitlines are made of metal with lower capacitance
and resistance than local bitlines [134].

Similar to standard READ/WRITE operations in DRAM,
whose latencies are set to accommodate worst-case accesses
to the furthest subarray, we set the RELOC latency based on
the worst case (i.e., the latency of relocating data between two
subarrays that are the furthest away from each other when
connected via the global row buffer). We use this worst-case
latency (plus a safety margin; see Section 4.2) as the timing
parameter for RELOC.

Issuing Multiple Activations Without a Precharge.
To activate src and dst rows one after another without
precharging either row, we must relax the existing constraint
that only one row in a bank can be active at a time. Existing
memory controllers do not allow another ACTIVATE com-
mand to be issued to an already-activated bank because the
row decoder hierarchy (i.e., the global and local row decoders)
cannot simultaneously drive two wordlines [72]. While a row
is active, the wordline corresponding to the row needs to re-
main asserted, so that the cells of the row remain connected
to the LRB. In existing DRAM chips, the decoder hierarchy
latches and drives only one-row address, which the mem-
ory controller provides along with an ACTIVATE command.
To enable FIGARO, we employ a similar technique to prior
work on subarray-level parallelism [72]: we add a latch to the
decoding logic of each subarray to store an additional row
address for holding the source row of RELOC, and extend the
local row decoder of each subarray, such that it can choose
between the row address in this latch and the conventional
row address bus (to identify the destination row of RELOC).
Enabling Unaligned Data Relocation. In a DRAM chip,

the column decoder latches and drives only one column ad-
dress per bank, which determines which portion of the LRB
is connected to the GRB. Because conventional DRAM acti-
vates only one subarray at a time, the column decoder sends
a single column address to all LRBs in the bank.

To enable unaligned data relocation (i.e., relocating data
from column A in the src subarray LRB to column B in the
dst subarray LRB, where A �= B), we need to modify the
column decoding logic. When the memory controller sends
two column addresses simultaneously (one for the source
subarray in RELOC, and the other for the destination subarray),
we add a multiplexer to the column decoder of each subarray,
to allow the decoder to choose which of the two column
addresses it reads (based on whether the subarray contains
the src or the dst LRB). As the existing address bus in DRAM
is wide enough to transfer two column addresses at once [72],
we do not need to change the physical DRAM interface.1

1RELOC uses 21 bits to express the column addresses: 7 bits to identify the
source column in the open row of the bank, 7 bits to identify the destination
subarray index, and 7 bits to identify the destination column.

317

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

4.2. Latency and Energy Analysis
We perform detailed circuit-level SPICE simulations to find

the latency of the RELOC operation. We analyze a SPICE-level
model of the entire cell array of a modern DRAM chip (i.e.,
row decoder, cell capacitor, access transistor, sense ampli-
fier, bitline capacitor and resistor) with 22 nm DRAM tech-
nology parameters, based on an open-source DRAM SPICE
model [39]. We use 22 nm PTM low-power transistor mod-
els [8, 148] to implement the access transistors and the sense
amplifiers. In our SPICE simulations, we run 108 iterations
of Monte-Carlo simulations with a ±5% margin on every
parameter of each circuit component, to account for man-
ufacturing process variation and for the worst-case cells in
DRAM. Across all iterations, we observe that RELOC operates
correctly. We report the latency of RELOC based on the Monte-
Carlo simulation iteration with the highest access latency.
To aid the explanation of our SPICE simulation of RELOC,

we use an example that performs RELOC from the Src column
of LRB S in subarray S to the Dst column of LRB D in sub-
array D through the GRB, as shown in Figure 5a. Figure 5b
shows the voltage of the bitlines for both the Src column
(which holds data value 1 in each cell) and the Dst column
during the RELOC process over time according to our SPICE
simulation. We explain this RELOC process step by step.

(a) Example RELOC Operation (b) Illustration of RELOC Bitline Voltages
1 2

3
4

5

ACT S RELOC Src D Dst

ACT D

Figure 5. Detailed RELOC operation and timing.

First, before the RELOC command is issued, an ACTIVATE
(ACT) command is sent to subarray S at time 0 (1). After
35 ns (based on the standard-specified tRAS parameter [52];
2), the bitlines are fully restored to VDD . Second, the mem-
ory controller sends the RELOC command to relocate (copy)
data from LRB S to LRB D through the GRB. RELOC turns
on the connection between the Src column in LRB S and the
Dst column in LRB D. Third, after a small amount of time
(3), the voltage of the source bitlines in the Src column first
drops, as these fully-driven bitlines share charge with the
precharged bitlines in the Dst column though the GRB. This
causes the corresponding sense amplifiers in LRB D to sense
the charge difference and start amplifying the perturbation,
during which the GRB helps amplification with higher drive
strength. In a very short time (less than 1 ns), bitlines in the
Dst column are fully driven with the value that is originally
stored in LRB S (4). Finally, an ACTIVATE command is sent
to subarray D (5), overwriting the DRAM cells connected to
the bitlines in the Dst column, while maintaining the existing
values of the other cells in the row [15, 81, 127].

Using SPICE simulations, we find that the latency of RELOC
is 0.57 ns (accounting for the worst case of relocating data
via the global row buffer between the two subarrays that are
the furthest away from each other). We add a guardband to
the RELOC latency, similar to what DRAM manufacturers do
to account for process and temperature variation (e.g., the
ACTIVATE timing, tRCD , has been observed to have extra
margins of 13.3% [12] and 17.3% [80]). We add a conservative

43% guardband for RELOC on top of our SPICE simulation
results, resulting in a 1 ns latency. This results in a total la-
tency of 63.5 ns to relocate one column (i.e., two ACTIVATEs,
one RELOC, and one PRECHARGE). We estimate the energy
consumption of a one-cache-block (rank-level) FIGARO data
relocation operation to be 0.03 µJ, using the Micron power
calculator [100].

5. Fine-Grained In-DRAM Cache Design
FIGARO can improve the efficiency of in-DRAM caches [15,

94] by enabling (1) the ability to relocate data into and out
of the cache at the fine granularity of a row segment instead
of an entire row, resulting in higher performance; and (2) de-
signs that avoid the need for a large number of fast (yet low-
capacity) subarrays interleaved among slow subarrays and
thus easier to manufacture, resulting in lower area overhead
and lower complexity. We use FIGARO as the foundation of a
new in-DRAM cache called FIGCache (fine-grained in-DRAM
cache). FIGCache co-locates hot row segments from slow
subarrays into a small number of rows that serve as a cache.
To manage the cache, FIGCache uses a tag store (FTS) in the
memory controller to hold metadata about currently-cached
segments, and employs a simple policy for identifying which
segments should be brought into the cache (Section 3). When
a row segment needs to be brought into the cache, FIGCache
uses multiple RELOC commands (one for each cache block
in the segment) to copy data from the slow subarray into
the cache. Likewise, a dirty evicted row segment is written
back from the cache to its location in the slow subarray using
RELOC commands. Rows serving as the cache can either be
implemented using small fast subarrays, reserved rowswithin
slow subarrays, or fast rows within a subarray (Section 5.2).

5.1. FIGCache Tag Store
A row segment is brought into FIGCache to lower the la-

tency for subsequent accesses to the segment. For each mem-
ory request, in order to know whether it should be serviced
by the cache or by the slow subarrays, the memory controller
needs to store information about which row segments are
currently cached. To this end, we introduce a FIGCache tag
store (FTS) in the memory controller. As shown in Figure 6,
we maintain a fixed portion of the tag store for each bank.
Within each portion, there is a separate entry for each in-
DRAM cache slot in the bank (where each fixed-size slot
is the size of one row segment). For each entry, FTS holds
four fields: (1) a tag holding the original address of the row
segment; (2) a valid bit (V in the figure); (3) a dirty bit (D);
and (4) a benefit counter (Benefit), which is used for cache
replacement. In a bank, FIGCache acts as a fully-associative
cache, and, thus, the entries within each portion of the FTS
are maintained as a fully-associative structure.

Figure 6. FIGCache tag store (FTS).

An FTS entry is set as valid when a row segment is relo-
cated to the corresponding in-DRAM cache slot. For every
memory request, the memory controller looks up the FTS
portion associated with the bank of the corresponding re-
quest to determine whether or not the request is a hit in the
in-DRAM cache. If the request is a FIGCache hit (i.e., an
FTS entry matches the row segment ID of the request), its
corresponding entry’s benefit counter is incremented if the

318

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

value is not saturated (we empirically set the counter size to
5 bits in this work), and the memory controller redirects the
request to the in-DRAM cache. If the request is a write, the
entry’s dirty bit is set. We next discuss how FIGCache misses
are handled.

ChoosingRowSegments to Insert Into theCache. We
rely on a very simple policy, called insert-any-miss, to iden-
tify when a row segment should be inserted into the cache:
every FIGCache miss for a memory request triggers a row
segment relocation into the cache. This policy is designed to
achieve the highest utilization of the in-DRAM cache. While
more sophisticated policies (e.g., adding only those segments
whose access frequencies exceed a certain threshold) can be
used to limit the number of segments inserted into FIGCache,
such policies typically spend additional area and energy on
calculating statistics. We evaluate the sensitivity of FIGCache
to various insertion policies in Section 9, and find that the
performance gain of FIGCache is robust to different policies,
and that our simple insert-any-miss policy performs well.

Cache Replacement Policy. FIGCache manages cache
replacement at the row granularity. When a new row segment
needs to be inserted, and no free segments are available in
the cache, FIGCache calculates the cumulative benefit of each
in-DRAM cache row, by summing together the benefit values
of each cached row segment in the row.2 The row with the
lowest total benefit score is selected for eviction. FIGCache
maintains a register that holds the ID of the row to be evicted
(6 bits in our configuration), and maintains a single bitvector
(8 bits in our configuration) that tracks which row segments
in the row have not yet been evicted. When a new in-DRAM
cache row is selected for eviction, the bitvector is set to all
ones, marking all of the row segments in the selected row
for eviction. From the marked row segments, the one with
the lowest individual benefit score is evicted, making room
for the segment being inserted, and its corresponding bit
in the bitvector is cleared. The other row segments remain
marked for eviction in the bitvector, and the next time that a
row segment needs to be inserted, the marked row segment
with the lowest score is evicted. This process continues for
every insertion until no more marked row segments remain,
at which point a new row is selected for eviction.

We choose to perform eviction at a row granularity in order
to take advantage of temporal locality across row segments.
The benefits of FIGCache increase when multiple row seg-
ments in an open FIGCache row are accessed, as memory
accesses to open rows are faster than memory accesses to
closed rows. By evicting all of the segments in a row, we can
pack the row with row segments that are accessed close in
time to each other, increasing the chance (due to locality) that
the segments will again be accessed together, thus increasing
the row buffer hit rate in the in-DRAM cache. We compare
our row-granularity replacement policy with commonly-used
replacement policies that can be applied at the row segment
granularity in Section 9, and show that our row-granularity
replacement policy achieves higher performance due to the
higher row buffer hit rate it enables.

5.2. In-DRAM Cache Design
Building In-DRAM Cache with Fast Subarrays. One

way to implement the in-DRAM cache is to add fast subar-
rays to a DRAM bank, in addition to the regular (i.e., slow)
subarrays, similar to prior works [15,94,134]. A fast subarray
achieves low access latency by reducing the bitline length [81].

2We can use the Dirty-Block Index [125] to simplify the summing oper-
ation, as it can help to efficiently maintain per-row benefit scores.

Unlike prior works [15, 94, 134], whose direct connections
between subarrays can incur highly-distance-dependent la-
tencies for data relocation (causing designers to interleave
many fast subarrays among slow subarrays to bound the re-
location latency), FIGARO provides a distance-independent
relocation latency (Section 4.1), as all relocation operations
go through the global row buffer and global bitlines that are
shared across all subarrays in a bank. This allows FIGCache
to employ only a small number of fast subarrays (we use
only two per bank in this work), which reduces both the area
overhead (fewer subarrays per bank lead to fewer peripheral
circuitry blocks that are needed for that bank) and manufac-
turing complexity (fewer fast subarrays lead to less design
and placement complexity).

Building In-DRAM Cache with Slow Subarrays. As
FIGARO facilitates the co-location of multiple hot row seg-
ments into the same DRAM row, the row buffer hit rate is ex-
pected to increase, thus lowering the average DRAM latency.
Our row-granularity replacement policy further increases
the likelihood of increased row buffer hit rates. As a result,
with a low-overhead relocation mechanism, FIGCache can
improve performance evenwithout the aid of reduced-latency
subarrays. This enables us to build the in-DRAM cache in con-
ventional homogeneous DRAM chips without introducing
heterogeneity into DRAM banks.

We propose to reserve a small number of DRAM rows per
bank in a slow subarray, to serve as the in-DRAM cache. Note
that DRAM row reservation is a widely-used optimization
method in both academia [31, 39, 126, 128, 141] and indus-
try [95]. One potential issue with using rows in an existing
slow subarray is that FIGARO cannot efficiently relocate data
within the same subarray. As a result, to avoid the overheads
of relocation, we simply do not cache any row segments from
the same subarray that FIGCache’s rows reside in. Given that
existing DRAM chips employ a large number of subarrays
(i.e., 32 to 64) in each bank [17, 72, 128], the loss of caching
opportunity is negligible. An alternative can be to reserve
DRAM rows in two subarrays, and relocate the row segments
of one of those subarrays to the reserved rows in the other
subarray. However, to simplify the cache management logic,
we do not evaluate such a setup in our work.

Building In-DRAMCache with Fast Rows in a Subar-
ray. Two recent works, CROW [39] and CLR-DRAM [97],
use the idea of cell coupling, where the same bit is written to
into two or more cells along the same bitline [39] or word-
line [97] within a subarray. Cell coupling reduces the access
latency when the coupled cells are activated together, as all
of the coupled cells now drive their charge simultaneously,
increasing the speed at which the data value can be sensed by
a sense amplifier. As a result, a row of coupled cells acts as a
fast DRAM row, enabling a similar effect as fast subarrays (i.e.,
low-latency access) without the need for a separate subarray.

Based on the structures proposed in CROW [39] and CLR-
DRAM [97] to write the same bit into multiple cells con-
currently, FIGARO can be extended to relocate data from a
conventional slow DRAM row to a fast row. When relocat-
ing data from global row buffer to the destination local row
buffer, RELOC can utilize the mechanisms proposed in existing
works [39, 97] so that each bit in the global row buffer can be
written into multiple cells (i.e., cells in the fast DRAM row)
in the destination subarray. We leave evaluation of such a
mechanism to future work.

Tiered-Latency (TL) DRAM [81] enables fast rows within a
subarray by adding isolation transistors along the bitlines of

319

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

the subarray. When the isolation transistors are open, only
a small number of rows remain connected to the local row
buffer, providing similar performance to a fast subarray. To
build FIGCache on top of TL-DRAM, we can use RELOC to
cache data from the slow rows of one subarray into the fast
rows of a different subarray, as RELOC cannot relocate data
when the source and destination are in the same subarray
without incurring additional overheads (i.e., the use of a sec-
ond subarray to serve as an intermediate buffer). We leave a
detailed implementation and evaluation of a TL-DRAM-based
FIGCache to future work.

6. Other Use Cases for FIGARO and FIGCache
We believe that FIGARO and FIGCache can enable multiple

new use cases (other than FIGCache in DDRx DRAM). We
briefly discuss two such cases, and leave it to future work to
design and evaluate mechanisms that enable these use cases.
FIGARO with Emerging DRAM Technologies. Al-

though we evaluate FIGARO and FIGCache for DDR4 DRAM,
both solutions can be applied to other DRAM-based memory
technologies with similar bank organizations to DDR4, such
as 3D-stacked High-Bandwidth Memory (HBM) [1,77,78] and
GDDR5 memory for GPUs [50].

Mitigating DRAM Security Vulnerabilities with FIG-
Cache. FIGCache can be used to reduce the vulnerability
of DRAM to row-buffer-conflict-based attacks. We briefly
examine two potential vulnerabilities: (1) RowHammer and
(2) side channel attacks in DRAM.

RowHammer [21, 29, 68, 69, 107, 108] is a vulnerability that
takes place when two or more rows in the same bank are
accessed frequently. These frequent accesses cause the two
(or more) rows to be repeatedly open and closed due to row
buffer conflicts, hammering (i.e., inducing bit flips in) the
data stored in neighboring DRAM rows. FIGCache helps
to reduce the impact of RowHammer because FIGCache dy-
namically relocates frequently-accessed data into a single
row. Frequently-accessed row segments can be cached by
FIGCache in the same in-DRAM cache row, which eliminates
the need to repeatedly open and close the DRAM rows that
hold each segment. FIGCache reduces the probability that
RowHammer can take place on the in-DRAM cache rows,
as FIGCache’s cache insertion policy keeps row segments
accessed around the same time as one another in a single row,
significantly reducing the frequency at which multiple in-
DRAM cache rows need to be opened/closed (see Section 8.1).
A DRAM-row-based side channel attack can be used by

a malicious program to locate and monitor the memory ac-
cesses of a victim program without the victim’s knowledge
or permission [118]. In a scenario where the attacker’s data
is located in the same bank as data belonging to the victim,
a side channel can be established by monitoring the access
time variation caused by row buffer conflicts. DRAMA [118]
demonstrates that this access time variation, coupled with
knowledge of where the attacker’s data resides in physical
memory, can be used to determine when the victim is access-
ing its data, revealing information such as when a user is
performing each keystroke while entering a URL into the ad-
dress bar of a browser. The attack works because the attacker
can observe information about row hits and misses to specific
DRAM rows where its data is co-located with that of the vic-
tim. FIGCache breaks this ability by caching select portions
of DRAM rows, which alters the row hit and miss patterns
for the cached data. Because the attack depends on precise
row hit/miss information, FIGCache’s caching behavior can
mitigate the attack.

We leave the evaluation of both attacks and potential miti-
gation techniques using FIGCache to future work.

7. Experimental Methodology
We evaluate FIGCache using a modified version of Ramu-

lator [73, 122], a cycle-accurate DRAM simulator, coupled
with our in-house processor simulator. We collect user-level
application traces using Pin [96]. Table 1 shows a summary
of our system configuration. We set the default row segment
size as 1/8th of a DRAM row, and study the effect of various
row segment sizes on the performance of FIGCache (Sec-
tion 9). For the fast subarray design, we use the open-source
SPICE model developed for LISA-VILLA [15], where slow
and fast subarrays have 512 and 32 DRAM rows, respectively,
and where timing parameters for activation (tRCD), precharge
(tRP), and restoration (tRAS) in fast subarrays can be reduced
by 45.5%, 38.2%, and 62.9% respectively.

Processor
8 cores, 3.2 GHz, 3-wide issue, 256-entry inst. window

8 MSHRs/core, L1 4-way 64 kB, L2 8-way 256 kB

Last-Level Cache 2MB/core, 64 B cache block, 16-way

Memory Controller 64-entry RD/WR request queues, FR-FCFS scheduling [121, 158]

DDR4, 800MHz bus frequency,
1 channel for single-core/4 channels for eight-core,

DRAM 1 rank, 4 bank groups with 4 banks each,
64 subarrays per bank, 8 kB row size, 4 GB capacity per channel,

address interleaving: {row, rank, bankgroup, bank, channel, column}

FIGARO rank-level RELOC granularity: 64 B, RELOC latency: 1 ns

row segment: 1/8th of DRAM row (16 cache blocks),
FIGCache fast subarray reduces tRCD / tRP / tRAS by 45.5% / 38.2% / 62.9% [15],

in-DRAM cache size: 64 rows per bank

LISA-VILLA in-DRAM cache size: 512 rows per bank

Table 1. Simulated system configuration.

To evaluate energy consumption, we model all major com-
ponents of our evaluated system based on prior works [11,
147], including CPU cores, L1/L2/last-level caches, off-chip
interconnects, and DRAM. We use several tools for this, in-
cluding McPAT 1.0 [87] for the CPU cores, CACTI 6.5 [105]
for the caches, Orion 3.0 [57] for the interconnect, and a
modified version of DRAMPower [13] for DRAM.

As shown in Table 2, we evaluate twenty single-thread
applications from the TPC [142], MediaBench [30], Mem-
ory Scheduling Championship [19], Biobench [7], and SPEC
CPU 2006 [137] benchmark suites. We classify the applica-
tions into two categories: memory intensive (greater than
10 last-level cache misses per kilo-instruction, or MPKI) and
memory non-intensive (less than 10 MPKI). To evaluate the
effect of FIGCache on a multicore system, we form 20 eight-
core multiprogrammed workloads. We vary the load on the
memory system by generating workloads where 25%, 50%,
75%, and 100% of the applications are memory intensive. To
demonstrate the performance improvement of FIGCache on
multithreaded workloads, we evaluate canneal and fluidan-
imate from PARSEC [10], and radix from SPLASH-2 [150].
For both the single-core applications and eight-core work-
loads, each core executes at least one billion instructions.
We report the instruction-per-cycle (IPC) speedup for single-
core applications, and weighted speedup [133] as the system
performance metric [28] for the eight-core workloads. For
multithreaded workloads, we execute the entire application,
and report the improvement in execution time.

Category Benchmark Name

Memory Intensive
zeusmp, leslie3d, mcf, GemsFDTD, libquantum

bwaves, lbm, com, tigr, mum

Memory Non-Intensive
h264ref, bzip2, gromacs, gcc, bfssandy
grep, wc-8443, sjeng, tpcc64, tpch2

Table 2. Benchmarks used for single-core and multipro-
grammed workloads.

320

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

8. Evaluation
We evaluate four realistic configurations to understand the

benefits of FIGCache:
• Base: a baseline system with conventional DDR4 DRAM;
• LISA-VILLA [15]: a state-of-the-art in-DRAM cache;
• FIGCache-Slow: our in-DRAM cache with cache rows stored
in 64 reserved rows of one existing slow subarray (i.e., a
system with conventional homogeneous DRAM subarrays);

• FIGCache-Fast: our in-DRAM cache with cache rows stored
in two small fast subarrays (with a total of 64 rows).

We also evaluate two idealized configurations to examine the
impact of certain system parameters:
• FIGCache-Ideal: an unrealistic version of FIGCache-Fast
where the row segment relocation latency is zero; and

• LL-DRAM : a systemwhere all subarrays in the DRAM chips
are fast (i.e., low latency).

8.1. Performance
Figures 7 and 8 show the performance improvement over

Base for our single-thread applications (using a one-core
system) and eight-application multiprogrammed workloads
(using an eight-core system), respectively. In both figures,
we group the applications and workloads based on memory
intensity (see Section 7). We make four observations from
the figures.
First, both FIGCache-Slow and FIGCache-Fast always im-

prove performance over Base. For our single-thread appli-
cations, FIGCache-Fast provides an average speedup over
Base of 1.5% (up to 2.9%) for memory non-intensive applica-
tions, and 16.1% (up to 22.5%) for memory intensive applica-
tions. For our multiprogrammed workloads, FIGCache-Fast
improves the weighted speedup over Base by an average
of 3.9%, 12.9%, 21.8%, and 27.1% for workloads in the 25%,
50%, 75%, and 100% memory intensive categories, respec-
tively. Across all 20 eight-core workloads, the average per-
formance improvement of FIGCache-Fast is 16.3%. FIGCache-
Fast achieves speedups for our three multithreaded appli-
cations as well (not shown in the figure), with an average

improvement of 16.8% over Base. Despite not having cache
rows with faster access times, FIGCache-Slow retains a large
fraction of the benefits of FIGCache-Fast, with an average
performance gain of 5.9% and 12.4% for single-thread and
multiprogrammed workloads, respectively.

Second, we observe that compared with LISA-VILLA,
which employs 16 fast subarrays and interleaves them among
the normal subarrays, FIGCache-Fast provides 4.7% higher
performance averaged across our 20 eight-core workloads,
despite employing only two fast subarrays. This is because
even though FIGCache-Fast has much fewer fast subarrays
per bank, FIGCache-Fast caches only 1/8th of a row at a time
and co-locates multiple row segments with high expected
temporal locality in a single cache row. The increased row
buffer hit rate in the in-DRAM cache (see analysis below)
provides most of FIGCache-Fast’s benefits over LISA-VILLA.
These benefits also allow FIGCache-Slow to outperform LISA-
VILLA by 1.9% on average across all of our multiprogrammed
workloads, even though FIGCache-Slow has no fast subarrays
at all. We conclude that reducing the granularity of caching
and co-locating multiple row segments into a single cache
row is greatly effective for improving the performance of an
in-DRAM cache.

Third, the benefits of FIGCache-Fast and FIGCache-Slow
increase as workload memory intensity increases. On aver-
age, compared to Base, FIGCache-Fast and FIGCache-Slow
provide 27.1% and 20.6% speedup for 100% memory inten-
sive eight-core workloads, respectively, whereas they achieve
more modest speedups of 3.9% and 3.2%, respectively, for 25%
memory intensive workloads. There are multiple reasons
for the increased benefits for memory intensive workloads:
these workloads (1) are more likely to generate requests that
compete for the same memory bank (i.e., they induce bank
conflicts by accessing different rows), which FIGCache can
potentially alleviate by gathering the accessed row segments
of each conflicting row into a single cache row; and (2) may in
some cases be more sensitive to DRAM latency. The potential

Figure 7. Performance of in-DRAM caching mechanisms for single-thread applications, normalized to Base.

Figure 8. Performance of in-DRAM caching mechanisms for eight-core multiprogrammed workloads, normalized to Base.

321

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

correlation between bank conflicts and FIGCache effective-
ness is corroborated by the fact that our eight-core multi-
programmed workloads achieve much larger performance
improvements than our single-core applications. Individual
applications in multiprogrammed workloads are likely to in-
terfere with each other, thus exacerbating bank conflicts [33,
35, 40, 70, 71, 84, 99, 102, 104, 110, 140, 141, 143, 144, 147, 155],
which FIGCache can help to alleviate.

Fourth, FIGCache-Fast approaches the ideal performance
improvement of both FIGCache-Ideal and LL-DRAM, coming
within 1.9% and 4.6% respectively, on average, for our eight-
core system. These improvements indicate that the latency of
cache insertion in FIGCache is low. When a FIGCache miss
occurs, the memory controller opens the row containing the
data that is being requested. While the row is open, the
memory controller uses RELOC operations to relocate the
row segment data into the cache. Since the row is already
open, the first ACTIVATE command discussed in Section 4.2
is not needed, which greatly reduces the time required for
relocation. The resulting relocation latency is low enough
that FIGCache can, in many cases, behave similarly to low-
latency DRAM, without the associated challenges of low-
latency DRAM (e.g., small capacity, high cost).
Overall, we conclude that FIGCache significantly reduces

DRAM latency and outperforms a state-of-the-art in-DRAM
caching mechanism, while approaching the performance of a
low-latency DRAM design with only fast subarrays.

Cache Hit Rate. Figure 9 illustrates the in-DRAM cache
hit rate of LISA-VILLA, FIGCache-Slow, and FIGCache-Fast,
averaged across each workload category. We observe that
despite having fewer or no fast subarrays, and having sig-
nificantly fewer rows reserved for caching, FIGCache-Slow
and FIGCache-Fast have comparable cache hit rates to LISA-
VILLA across all workloads. This is because due to the limited
row buffer locality in many applications, caching an entire
DRAM row (as opposed to a row segment), leads to ineffi-
cient cache utilization since most of each cached row is not
used. The finer granularity employed by FIGCache elimi-
nates much of this inefficient utilization without sacrificing
the cache hit rate with a smaller cache. FIGCache-Slow re-
sults in a slightly lower cache hit ratio than FIGCache-Fast
because, as we discuss in Section 5.2, FIGCache-Slow does not
cache row segments from the subarray where the reserved
rows are allocated.

Figure 9. In-DRAM cache hit rate of LISA-VILLA, FIGCache-
Slow, and FIGCache-Fast.

Row Buffer Hit Rate. Unlike with the cache hit rate,
FIGCache-Slow and FIGCache-Fast both have significantly-
higher (18% higher on average) row buffer hit rates for the
entire DRAM system than LISA-VILLA, as we observe in
Figure 10. This is due to two reasons: (1) the smaller row seg-
ment granularity used by FIGCache; and (2) our benefit-based

Figure 10. DRAM row buffer hit rate of LISA-VILLA,
FIGCache-Slow, and FIGCache-Fast.

cache replacement policy (Section 5.1), which increases the
row buffer hit rate by taking into account the temporal local-
ity of multiple row segments during co-location. In contrast,
LISA-VILLA caches an entire DRAM row at a time, and thus
the row buffer hit rate cannot be improved fundamentally
beyond the existing row buffer hit rate of the original row. As
a result, LISA-VILLA can benefit only from the reduced laten-
cies of a fast subarray. We conclude that both FIGCache-Slow
and FIGCache-Fast are effective at improving row buffer hit
rate due to their ability to efficiently co-locate multiple row
segments from different source rows into a single in-DRAM
cache row.

8.2. System Energy Consumption
Figure 11 shows the overall system energy consumption for

Base, FIGCache-Slow, and FIGCache-Fast, averaged across
each workload category. We break down the system energy
into the energy consumed by the CPU, caches (L1, L2, and
LLC), off-chip interconnect (labeled off-chip in the figure),
and DRAM.

Figure 11. Energy and energy breakdown of LISA-VILLA,
FIGCache-Slow, and FIGCache-Fast, normalized to Base.

We draw two observations from the figure. First, for each
workload category, both FIGCache-Slow and FIGCache-Fast
consume less energy than Base. For the memory intensive
single-core applications, FIGCache-Slow and FIGCache-Fast
reduce the system energy consumption by an average of
6.9% and 11.1%, respectively, compared to Base. Second, we
observe that the energy reduction comes from two sources:
(1) improved row buffer hit rate, which helps to amortize the
energy of ACTIVATE and PRECHARGE commands on many
memory accesses; and (2) reduced execution time, which
saves static energy across each component. For FIGCache-
Fast, there is a third source of energy reduction, as the faster
ACTIVATE and PRECHARGE commands enabled by the fast
subarrays further reduce both dynamic and static energy.

322

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

Overall, we conclude that FIGCache is effective at reducing
system energy consumption.

8.3. Hardware Overhead
DRAM Area and Power Overhead. FIGARO adds a col-

umn address MUX, row address MUX, and a row address
latch to each DRAM subarray. Our RTL-level evaluation
using a 22 nm technology shows that each column MUX oc-
cupies an area of 4.7 µm2 and consumes 2.1 µW, while each
row MUX occupies an area of 18.8 µm2 and consumes 8.4 µW.
Each row address latch stores the 40-bit partially predecoded
row address, and occupies an area of 35.2 µm2 with a power
consumption of 19.1 µW. For the system configurations de-
scribed in Table 1, the overall area overhead is less than 0.3%
of an entire DRAM chip. The overall power consumption is
negligible as an activation consumes 51.2mW [72].
FIGCache-Fast introduces two fast subarrays per bank as

an inclusive in-DRAM cache, which is transparent to the
operating system. Each fast subarray contains 32 rows (vs.
512 rows in each slow subarray). Using area estimates from
prior works [15, 94], we calculate that a fast subarray, includ-
ing cells and sense amplifiers, requires 22.6% of the area of a
slow subarray. As a result, in our DRAM configuration (see
Table 1) where each bank has 64 slow subarrays, the two fast
subarrays introduced by FIGCache-Fast add 0.7% to the area of
the DRAM chip. In comparison, LISA-VILLA [15] adds 16 fast
subarrays to each bank, which have an area overhead of 5.6%
of the DRAM chip. FIGCache-Slow has a lower area overhead
than FIGCache-Fast, as it uses rows in existing subarrays in-
stead of adding new subarrays, eliminating the area required
for additional sense amplifiers. As a result, FIGCache-Slow
has an area overhead of only 0.2% in the DRAM chip.

Memory Controller. On the memory controller side, we
add the FTS (Section 5), which incurs modest storage over-
head. We assume one FTS portion per bank, where each
portion has 512 entries. Each entry of FTS consists of a row
segment address tag, a 5-bit benefit counter, and the dirty and
valid bits. The width of the tag is dependent on the number
of cached row segments in one bank. For the configuration in
Section 7, there are 256K row segments per bank (32K DRAM
rows per bank, 8 row segments per DRAM row), which re-
quires a tag size of 19 bits. In total, each entry requires 26 bits.
Therefore, for each channel in our DRAM configuration (see
Table 1), which contains 16 banks with 512 FTS entries per
bank, the total storage required for the FTS is 26.0 kB. Note
that compared to LISA-VILLA [15], the additional cost of FTS
is only the 3-bit row segment index per entry. Using Mc-
PAT [87], we compute the total area of all FTS tables to be
0.496mm2 at the 22 nm technology node, which is only 1.44%
of the area consumed by the 16MB last-level cache.
We evaluate the access time and power consumption of

FTS using CACTI [105]. We find that the access time is only
0.11 ns, which is small enough that we do not expect it to have
a significant impact on the overall cycle time of the memory
controller. To determine power consumption, we analyze the
FTS activity for our applications, accounting for all of the
major table operations. Using CACTI [105] and assuming
a 22 nm technology node, we find that the table consumes
0.187mWon average. This is only 0.07% of the average power
consumed by the last-level cache. We include this additional
power consumption in our system energy evaluations.

9. Sensitivity Studies
In this section, we evaluate our design with various config-

urations, including different cache capacities, row segment

sizes, cache replacement policies and hot row segment iden-
tification policies. As FIGCache-Slow has similar trends with
FIGCache-Fast for these configurations, we show results for
only FIGCache-Fast.

9.1. In-DRAM Cache Capacity
We examine how the number of fast subarrays in each

DRAM bank affects performance. Figure 12 shows the
speedup of FIGCache-Fast over Base as we vary the num-
ber of fast subarrays (FS in the figure) from 1 to 16. We
make two observations from the figure. First, FIGCache-
Fast’s performance improvement increases with increasing
in-DRAM cache capacity. A larger number of fast subarrays
reduces the number of evictions, and has the potential to
provide more opportunities for FIGCache-Fast to reduce ac-
cess latency for rows that would otherwise be evicted from a
smaller in-DRAM cache. Second, more fast subarrays provide
diminishing returns on FIGCache’s performance improve-
ment, even though they come with additional storage and
complexity overheads. For example, increasing the number
of fast subarrays from 2 to 4 and from 4 to 8 improves per-
formance by less than 2.7% and 0.8%, respectively, for 100%
memory intensive eight-core workloads. We implement two
fast subarrays per bank to achieve a balance between perfor-
mance improvement and in-DRAM storage overhead.

Figure 12. Performance with different cache capacities.

9.2. Row Segment Size
We vary the size of a row segment to understand its impact

on performance. While a larger row segment size can poten-
tially expose a greater number of opportunities for exploiting
spatial locality within a DRAM row, there are three down-
sides: (1) many applications do not make use of the contents
of an entire rowwhen the row is open, causing a row segment
size that is too large to lead to cache underutilization; (2) the
caching latency increases, as a larger row segment requires
more RELOC operations to be issued; and (3) for a given in-
DRAM cache size, a larger row segment size means fewer row
segments can be cached. Figure 13 shows the performance of
FIGCache-Fast with row segment sizes ranging from 8 cache
blocks (i.e., 512 B, 1/16th of a DRAM row) to 128 cache blocks
(i.e., 8 kB, the entire row). We make two observations from
the figure. First, we find that FIGCache-Fast performs slightly
worse than LISA-VILLA [15] when the row segment size is an
entire DRAM row (128 cache blocks). This is due to the higher
data relocation latency required by FIGCache, as 128 RELOC
operations are needed, and highlights the benefits of smaller
row segment sizes. Second, we find a peak in performance
at a row segment size of 16 cache blocks (i.e., 1 kB, 1/8th of
a DRAM row), as it outperforms other row segment sizes
across all of our workload categories, and, thus, we choose
this as the row segment size in our implementation. Note
that while we do not evaluate it, FIGCache can be modified

323

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

Figure 13. Performance with different row segment sizes.

to support heterogeneous and/or dynamic row segment sizes
(as opposed to the static row segment size that we currently
use). We leave such a design to future work.

9.3. In-DRAM Cache Replacement Policy
As we discuss in Section 5.1, we implement a new row-

granularity benefit-based cache replacement policy for FIG-
Cache, where the eviction granularity (an entire row) differs
from the insertion granularity (a single row segment). The
different eviction and insertion granularities allow us to im-
prove opportunities for exploiting temporal locality across
row segments in an in-DRAM cache row by packing recently-
accessed row segments together into a single cache row. To
understand the benefits of our policy, we evaluate how FIG-
Cache performs with three other commonly-used replace-
ment policies. Figure 14 shows the performance (normal-
ized to Base) of FIGCache-Fast using our replacement policy
(RowBenefit in the figure), along with FIGCache-Fast’s perfor-
mance using: (1) SegmentBenefit, a traditional benefit-based
policy [81] where the granularity of eviction is the same as
that of insertion (a row segment for FIGCache), and only the
one row segment with the lowest benefit score anywhere in
the in-DRAM cache is evicted; (2) LRU, a traditional policy
that evicts the least-recently-used row segment; and (3) Ran-
dom, a policy that evicts a row segment at random from any
row in the cache.

Figure 14. Performance with different in-DRAM cache re-
placement policies for FIGCache.

Wemake two observations from the figure. First, FIGCache-
Fast outperforms Base by more than 12.5% on average across
both single-thread and multithreaded workloads with all four
cache replacement policies, indicating the benefits of fine-
granularity in-DRAM caching regardless of the exact replace-
ment policy employed. Second, our RowBenefit policy either
performs the same as, or outperforms, all three commonly-
used policies, with its benefits increasing as workloads be-
come more memory intensive. The RowBenefit policy im-
proves the performance of FIGCache-Fast by 4.1% over the
next-best policy (SegmentBenefit) for 100% memory intensive

eight-core workloads, due to its increased row buffer hit rate
from successfully improving temporal locality in in-DRAM
cache rows. We conclude that our fine-grained in-DRAM
cache with its row-granularity replacement policy is effective
at capturing temporal locality across cached row segments.

9.4. Row Segment Insertion Policy
We use a simple insert-any-miss policy to identify which

row segments to cache (as we discuss in Section 5.1), where
we insert every row segment that misses in the in-DRAM
cache into the cache. However, it is possible to be more ju-
dicious in deciding which row segments should be inserted
into the cache. One example is increasing the threshold of
the number of consecutive cache misses to the row segment
before the segment is inserted. While a higher threshold can
potentially reduce cases where a row segment is accessed only
once across a large time period (in which case it cannot bene-
fit from caching), it can also (1) reduce the benefits of caching
(by waiting too long to cache a row segment with high tempo-
ral locality), and (2) require additional metadata (as accesses
to uncached row segments now need to be tracked). To un-
derstand the potential benefits of a more judicious insertion
policy, we evaluate different threshold values (where a value
of 1 is our policy of caching a row segment after a miss to
it), ideally assuming that the additional storage required for
higher thresholds does not introduce additional latency.
Figure 15 shows FIGCache-Fast’s average performance,

normalized to Base, for four threshold values (1, 2, 4, 8). We
make two observations from the figure. First, increasing the
threshold from 1 to 2 minimally increases the performance of
memory non-intensive workloads, though further threshold
increases can result in worse performance than a threshold of
1. Second, for memory intensive workloads, a higher thresh-
old leads to worse performance, by decreasing the number of
cache hits (latter not shown). Therefore, we conclude that
a threshold of 1 (i.e., our simple insert-any-miss policy) is
effective for performance.

Figure 15. Performancewith different row segment insertion
thresholds.

10. Related Work
To our knowledge, this work is the first to propose an effi-

cient fine-grained in-DRAM data relocation substrate, which
enables a new fine-grained in-DRAM cache design. We al-
ready quantitatively demonstrate that FIGCache outperforms
the most closely-related state-of-the-art in-DRAM cache de-
sign, LISA-VILLA [15]. In this section, we briefly discuss other
related works that propose (1) other designs for in-DRAM
caches, (2) in-DRAM data relocation support, (3) designs that
improve the row buffer hit rate; and (4) DRAM latency and
power reduction mechanisms.

In-DRAM Caching Mechanisms. As we discuss in Sec-
tion 3, there are three main approaches that prior works

324

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

take in building in-DRAM caches: (1) a heterogeneous sub-
array based design (Tiered-Latency DRAM [81]), (2) a het-
erogeneous bank based design without data relocation sup-
port (CHARM [134]), and (3) a heterogeneous bank based
design with bulk data relocation support (DAS-DRAM [94]
and LISA-VILLA [15]). Like FIGCache, these works build
their in-DRAM caches out of DRAM cells. Several earlier
works [38,42,44,45,59,120] on cached DRAM integrate SRAM
caches into the DRAM modules, usually at very high area
overhead [72, 81].

Similar to traditional caching mechanisms that relocate
data into a dedicated cache, CROW [39], CLR-DRAM [97],
and Multiple Clone Row DRAM (MCR-DRAM) [20] decrease
the access latency for frequently-accessed DRAM rows by
coupling multiple cells together for a single bit of data, thus
increasing the amount of charge that is driven to a sense
amplifier when a row is activated. Aswe discuss in Section 5.2,
FIGCache can be built on top of the hardware mechanisms
that CROW and CLR-DRAM use to manage the fast rows.
While FIGCache can also be integrated with MCR-DRAM,
such a design can become more complex, as MCR-DRAM
depends on the OS to manage which pages are assigned to
its fast rows [20].

In-DRAM Data Relocation Support. The DAS-
DRAM [94] and LISA [15] substrates provide support for
bulk data migration across subarrays, as we discuss in Sec-
tion 3. Another mechanism for bulk data relocation in DRAM
is RowClone-FPM [127]. However, as RowClone-FPM re-
locates data only within a subarray, it can not be used to
build an in-DRAM cache that caches data from multiple sub-
arrays in a bank. RowClone-PSM [127] is a mechanism that
relocates data at column granularity across different DRAM
banks, using the shared global data bus inside DRAM (which
connects to the memory channel). Unfortunately, by using
the global data bus, RowClone-PSM blocks memory requests
to all banks during data relocation, reducing the overall bank-
level parallelism [75, 110]. If RowClone-PSM is used to relo-
cate 4 kB of data between two subarrays in separate banks, it
decreases system performance by 24% compared to using a
conventional memcpy operation [15]. RowClone-PSM’s per-
formance is even lower for data relocation between subarrays
in the same bank, as this requires two RowClone-PSM opera-
tions (one moving data from the source subarray to a second
bank that serves as an intermediate buffer, and another mov-
ing data from the second bank to the destination subarray in
the original bank) [127]. Network-on-Memory (NoM) [119]
overcomes this inter-bank limitation of RowClone-PSM with
fast and efficient data relocation across banks within 3D-
stacked DRAM, via the use of higher connectivity between
banks provided by a network in the logic layer. FIGARO is
orthogonal to NoM.

Mechanisms to Improve Row Buffer Hit Rate. Sev-
eral works mitigate the negative effects of low row buffer
hit rates by reducing the amount of activated data, either by
enabling partial row buffer activation, designing smaller row
buffers, or by in-DRAM data layout or transfer transforma-
tions. Examples of these works include fine-grained activa-
tion [22], Half-DRAM [155], selective bitline activation [143],
partial row activation [84], efficient 3D-stacked DRAM de-
signs [18, 113], gather-scatter DRAM [129], data reorganiza-
tion in 3D-stacked DRAM [5,6], and row buffer locality aware
caching in hybrid memories [152]. FIGCache is orthogonal
to these designs, and can be combined with them to reduce
the amount of unused activated data both in cached rows

and in non-cached rows. At the software level, prior work
proposes to reduce the size of a memory page in the operating
system to what it calls micro-pages [141], in order to improve
spatial locality within a page. The reduced page size allows
for multiple micro-pages to fit into a single DRAM row, and
increases the row buffer hit rate by co-locating heavily-used
micro-pages into the same row. While this approach is similar
to how FIGCache collects multiple cached row segments into
a single DRAM row, micro-pages do not have hardware sup-
port for relocation, and must instead use high-latency memcpy
operations through the memory controller to relocate data.
Other techniques to improve the row buffer hit rate include
changing the memory scheduling policy (e.g., [9, 32, 46, 47,
55, 56, 70, 71, 103, 109, 110, 112, 121, 139, 140, 144, 153, 158]) to
result in more row buffer hits or introducing new memory
allocation policies [24, 54, 56, 90, 104, 114, 145, 146, 151, 154]
to reduce inter-thread interference at the row buffer. These
techniques are orthogonal to FIGCache.

DRAM Latency and Power Reduction. To reduce
DRAM access latency, prior works enable reduced DRAM
timing parameters by exploiting the charge level of DRAM
cells [23, 40, 67, 89, 117, 132, 147, 156] or by driving bit-
lines with charge from multiple cells that contain the same
data [20, 39, 97]. Several other works [12, 14, 23, 65, 66, 79, 80]
employ optimized timing parameters that take advantage
of variation in and across DRAM chips to speed up DRAM
accesses. Aside from latency reduction, recent studies pro-
pose to reduce DRAM row activation and I/O power con-
sumption through efficient row buffer designs (e.g., multiple
sub-row buffers [35], row buffer caches [43, 92, 93, 149], ea-
ger writeback [53, 76, 83, 138]), sub-rank memory [2, 157],
silent writeback elimination [85, 86], special data encod-
ing schemes [34, 124, 135, 136], an OS-based scheduler to
select different power modes [26], a page-hit-aware low
power design [91], and DRAM voltage and/or frequency scal-
ing [16, 25, 27, 36, 37, 106]. FIGCache provides a new solution
for DRAM latency and power reduction, which can poten-
tially be combined with these existing approaches.

11. Conclusion
In this work, we observe that existing in-DRAM cache

designs are inefficient due to (1) the coarse granularity (i.e.,
a DRAM row) at which they cache data and (2) hardware
designs that result in high area overhead and manufacturing
complexity. We eliminate these inefficiencies by introduc-
ing FIGARO, a new, low-cost DRAM substrate that enables
data relocation (i.e., copying) at the granularity of a DRAM
column within a chip (cache block within a rank) with only
minor modifications to existing peripheral circuitry in com-
modity DRAM chips. Using FIGARO, we build FIGCache, a
fine-grained in-DRAM cache, which greatly improves over-
all performance and energy consumption, and has a signif-
icantly simpler design than existing in-DRAM caches. We
believe and hope that future works and architectures can
exploit the FIGARO substrate to enable more use cases and
application-/system-level performance and energy benefits.

Acknowledgments
We thank the anonymous reviewers, SAFARI group mem-

bers for the feedback and the stimulating research environ-
ment. This work was supported by a Hunan Province Science
and Technology Planning project (No. 2019RS2027), a Na-
tional University of Defense Technology research project (No.
18/19-QNCXJ-WYH), and the industrial partners of SAFARI,
especially Google, Huawei, Intel, Microsoft, and VMware.

325

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

References

[1] Advanced Micro Devices, Inc., “High Bandwidth Memory.” https:
//www.amd.com/en/technologies/hbm

[2] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber,
“Improving System Energy Efficiency with Memory Rank Subsetting,”
TACO, 2012.

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-
in-Memory Accelerator for Parallel Graph Processing,” in ISCA, 2015.

[4] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A
Low-Overhead, Locality-Aware Processing-in-Memory Architecture,”
in ISCA, 2015.

[5] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory
Using 3D-Stacked DRAM,” in ISCA, 2015.

[6] B. Akin, J. C. Hoe, and F. Franchetti, “HAMLeT: Hardware Accelerated
Memory Layout TransformWithin 3D-Stacked DRAM,” in HPEC, 2014.

[7] K. Albayraktaroglu, A. Jaleel, XueWu, M. Franklin, B. Jacob, Chau-Wen
Tseng, and D. Yeung, “BioBench: A Benchmark Suite of Bioinformatics
Applications,” in ISPASS, 2005.

[8] Arizona State Univ., NIMO Group, “Predictive Technology Model,”
2012. http://ptm.asu.edu/

[9] R. Ausavarungnirun, K. K. Chang, L. Subramanian, G. H. Loh, and
O. Mutlu, “Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems,” in ISCA, 2012.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in PACT, 2008.

[11] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks,” in ASPLOS, 2018.

[12] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson,
N. Wehn, and K. Goossens, “Exploiting Expendable Process-Margins
in DRAMs for Run-Time Performance Optimization,” in DATE, 2014.

[13] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens,
“Towards Variation-Aware System-Level Power Estimation of DRAMs:
An Empirical Approach,” in DAC, 2013.

[14] K. K. Chang, A. Kashyap, H. Hassan, , S. Ghose, K. Hsieh, D. Lee,
T. Li, G. Pekhimenko, S. Khan, and O. Mutlu, “Understanding Latency
Variation in Modern DRAM Chips: Experimental Characterization,
Analysis, and Optimization,” in SIGMETRICS, 2016.

[15] K. K. Chang, P. J. Nair, , D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu,
“Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray
Data Movement in DRAM,” in HPCA, 2016.

[16] K. K. Chang, A. G. Yaglikci, A. Agrawal, N. Chatterjee, S. Ghose,
A. Kashyap, H. Hassan, D. Lee, M. O’Connor, and O. Mutlu, “Un-
derstanding Reduced-Voltage Operation in Modern DRAM Devices:
Experimental Characterization, Analysis, and Mechanisms,” in SIG-
METRICS, 2017.

[17] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim,
and O. Mutlu, “Improving DRAM Performance by Parallelizing Re-
freshes with Accesses,” in HPCA, 2014.

[18] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler,
M. Rhu, and W. J. Dally, “Architecting an Energy-Efficient DRAM
System for GPUs,” in HPCA, 2017.

[19] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. H. Pugsley, A. N.
Udipi, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Memory
Scheduling Championship (MSC),” 2012. https://www.cs.utah.edu/
~rajeev/jwac12/

[20] J. Choi, W. Shin, J. Jang, J. Suh, Y. Kwon, Y. Moon, and L.-S. Kim,
“Multiple Clone Row DRAM: A Low Latency and Area Optimized
DRAM,” in ISCA, 2015.

[21] L. Cojocar, J. S. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and
O. Mutlu, “Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers,” in IEEE S&P, 2020.

[22] E. Cooper-Balis and B. Jacob, “Fine-Grained Activation for Power
Reduction in DRAM,” IEEE Micro, 2010.

[23] A. Das, H. Hassan, and O. Mutlu, “VRL-DRAM: Improving DRAM
Performance via Variable Refresh Latency,” in DAC, 2018.

[24] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-Core Mapping Policies to Reduce Memory System
Interference in Multi-Core Systems,” in HPCA, 2013.

[25] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Mem-
ory Power Management via Dynamic Voltage/Frequency Scaling,” in
ICAC, 2011.

[26] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and
M. J. Irwin, “Scheduler-Based DRAM Energy Management,” in DAC,
2002.

[27] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Mem-
Scale: Active Low-Power Modes for Main Memory,” in ASPLOS, 2011.

[28] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for
Multiprogram Workloads,” IEEE Micro, 2008.

[29] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides of Target
Row Refresh,” in IEEE S&P, 2020.

[30] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “MediaBench II
Video: Expediting the Next Generation of Video Systems Research,”
MICPRO, 2009.

[31] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-
Memory Compute Using Off-the-Shelf DRAMs,” in MICRO, 2019.

[32] S. Ghose, H. Lee, and J. F. Martínez, “Improving Memory Scheduling
via Processor-Side Load Criticality Information,” in ISCA, 2013.

[33] S. Ghose, T. Li, N. Hajinazar, D. Senol Cali, and O.Mutlu, “Demystifying
Complex Workload–DRAM Interactions: An Experimental Study,” in
SIGMETRICS, 2019.

[34] S. Ghose, A. G. Yağlıkçı, R. Gupta, D. Lee, K. Kudrolli, W. X. Liu,
H. Hassan, K. K. Chang, N. Chatterjee, A. Agrawal, M. O’Connor,
and O. Mutlu, “What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study,” SIGMETRICS, 2018.

[35] N. D. Gulur, R. Manikantan, M. Mehendale, and R. Govindarajan, “Mul-
tiple Sub-Row Buffers in DRAM: Unlocking Performance and Energy
Improvement Opportunities,” in ICS, 2012.

[36] J. Haj-Yahya, M. Alser, J. Kim, A. G. Yağlıkçı, N. Vijaykumar, E. Rotem,
and O. Mutlu, “SysScale: Exploiting Multi-Domain Dynamic Voltage
and Frequency Scaling for Energy Efficient Mobile Processors,” in ISCA,
2020.

[37] J. Haj-Yahya, Y. Sazeides, M. Alser, E. Rotem, and O.Mutlu, “Techniques
for Reducing the Connected-Standby Energy Consumption of Mobile
Devices,” in HPCA, 2020.

[38] C. A. Hart, “CDRAM in a Unified Memory Architecture,” in COMPCON,
1994.

[39] H. Hassan, M. Patel, J. S. Kim, A. G. Yaglikci, N. Vijaykumar, N. Man-
sourighiasi, S. Ghose, and O. Mutlu, “CROW: A Low-Cost Substrate
for Improving DRAM Performance, Energy Efficiency, and Reliability,”
in ISCA, 2019.

[40] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin,
and O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting
Row Access Locality,” in HPCA, 2016.

[41] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko,
D. Lee, O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-
Source Infrastructure for Enabling Experimental DRAM Studies,” in
HPCA, 2017.

[42] A. Hegde, N. K. Vijaykrishnan, M. T. Kandemir, and M. J. Irwin, “VL-
CDRAM: Variable Line Sized Cached DRAMs,” in CODES+ISSS, 2003.

[43] E. Herrero, J. González, R. Canal, and D. Tullsen, “Thread Row Buffers:
Improving Memory Performance Isolation and Throughput in Multi-
programmed Environments,” IEEE TC, 2013.

[44] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima, “The Cache
DRAM Architecture: A DRAM with an On-Chip Cache Memory,” IEEE
Micro, 1990.

[45] W.-C. Hsu and J. E. Smith, “Performance of Cached DRAM Organiza-
tions in Vector Supercomputers,” in ISCA, 1993.

[46] I. Hur and C. Lin, “Adaptive History-Based Memory Schedulers,” in
MICRO, 2004.

[47] E. İpek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-Optimizing
Memory Controllers: A Reinforcement Learning Approach,” in ISCA,
2008.

[48] K. Itoh, VLSI Memory Chip Design. Springer Science & Business
Media, 2013.

[49] JEDEC Solid State Technology Assn., JESD79-3F: DDR3 SDRAM Stan-
dard, July 2012.

[50] JEDEC Solid State Technology Assn., JESD212C: Graphics Double Data
Rate (GDDR5) SGRAM Standard, February 2016.

[51] JEDEC Solid State Technology Assn., JESD209-4B: Low Power Double
Data Rate 4 (LPDDR4) Standard, March 2017.

[52] JEDEC Solid State Technology Assn., JESD79-4B: DDR4 SDRAM Stan-
dard, June 2017.

[53] M. Jeon, C. Li, A. L. Cox, and S. Rixner, “Reducing DRAM Row Activa-
tions with Eager Read/Write Clustering,” TACO, 2013.

326

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

[54] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez,
“Balancing DRAM Locality and Parallelism in Shared Memory CMP
Systems,” in HPCA, 2012.

[55] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and
C. R. Das, “Orchestrated Scheduling and Prefetching for GPGPUs,” in
ISCA, 2013.

[56] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative Thread Array
Aware Scheduling Techniques for Improving GPGPU Performance,” in
ASPLOS, 2013.

[57] A. B. Kahng, B. Lin, and S. Nath, “Explicit Modeling of Control and
Data for Improved NoC Router Estimation,” in DAC, 2012.

[58] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and
J. Choi, “Co-Architecting Controllers and DRAM to Enhance DRAM
Process Scaling,” in The Memory Forum, 2014.

[59] G. Kedem and R. P. Koganti, “WCDRAM:A Fully Associative Integrated
Cached-DRAMwithWide Cache Lines,” Duke Univ. Dept. of Computer
Science, Tech. Rep. CS-1997-03, 1997.

[60] B. Keeth, DRAM Circuit Design: Fundamental and High-Speed Topics.
John Wiley & Sons, 2007.

[61] S. Khan, D. Lee, Y. Kim, A. Alameldeen, C. Wilkerson, and O. Mutlu,
“The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.

[62] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level
Technique to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

[63] S. Khan, C.Wilkerson, Z.Wang, A. R. Alameldeen, D. Lee, and O.Mutlu,
“Detecting and Mitigating Data-Dependent DRAM Failures by Exploit-
ing Current Memory Content,” in MICRO, 2017.

[64] R. Kho, D. Boursin, M. Brox, P. Gregorius, H. Hoenigschmid, B. Kho,
S. Kieser, D. Kehrer, M. Kuzmenka, U. Moeller, P. Petkov, M. Plan,
M. Richter, I. Russell, K. Schiller, R. Schneider, K. Swaminathan, B. We-
ber, J. Weber, I. Bormann, F. Funfrock, M. Gjukic, W. Spirkl, H. Steffens,
J. Weller, and T. Hein, “75nm 7Gb/s/Pin 1Gb GDDR5 Graphics Memory
Device with Bandwidth-Improvement Techniques,” in ISSCC, 2009.

[65] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing
DRAM Access Latency by Exploiting the Variation in Local Bitlines,”
in ICCD, 2018.

[66] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF:
Quickly Evaluating Physical Unclonable Functions by Exploiting the
Latency-Reliability Tradeoff in Modern Commodity DRAM Devices,”
in HPCA, 2018.

[67] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe:
Using Commodity DRAM Devices to Generate True Random Numbers
with Low Latency and High Throughput,” in HPCA, 2019.

[68] J. S. Kim, M. Patel, A. G. Yaglikçi, H. Hassan, R. Azizi, L. Orosa, and
O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques,” in ISCA, 2020.

[69] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping Bits in Memory without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.

[70] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable
and High-Performance Scheduling Algorithm for Multiple Memory
Controllers,” in HPCA, 2010.

[71] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
Cluster Memory Scheduling: Exploiting Differences in Memory Access
Behavior,” in MICRO, 2010.

[72] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting
Subarray-Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[73] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” in IEEE CAL, 2015.

[74] S. Koppula, L. Orosa, A. G. Yaglikçi, R. Azizi, T. Shahroodi, K. Kanel-
lopoulos, and O. Mutlu, “EDEN: Enabling Energy-Efficient, High-
Performance Deep Neural Network Inference Using Approximate
DRAM,” in MICRO, 2019.

[75] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory
Bank-Level Parallelism in the Presence of Prefetching,” inMICRO, 2009.

[76] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “DRAM-
Aware Last-Level Cache Writeback: Reducing Write-Caused Interfer-
ence in Memory Systems,” in Univ. of Texas at Austin, HPS Research
Group, Tech. Rep. TR-HPS-2010-2, 2010.

[77] D. U. Lee, K. W. Kim, K. W. Kim, K. S. Lee, S. J. Byeon, J. H. Kim,
J. H. Cho, J. Lee, and J. H. Chun, “A 1.2 V 8 Gb 8-Channel 128 GB/s
High-Bandwidth Memory (HBM) Stacked DRAM with Effective I/O
Test Circuits,” JSSC, 2015.

[78] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous
Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at
Low Cost,” TACO, 2016.

[79] D. Lee, S. M. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun,
G. Pekhimenko, V. Seshadri, and O. Mutlu, “Design-Induced Latency
Variation in Modern DRAM Chips: Characterization, Analysis, and
Latency Reduction Mechanisms,” SIGMETRICS, 2017.

[80] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and
O. Mutlu, “Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case,” in HPCA, 2015.

[81] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu,
“Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Archi-
tecture,” in HPCA, 2013.

[82] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu,
“Decoupled Direct Memory Access: Isolating CPU and IO Traffic by
Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[83] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager Writeback – A
Technique for Improving Bandwidth Utilization,” in MICRO, 2000.

[84] Y. Lee, H. Kim, S. Hong, and S. Kim, “Partial Row Activation for Low-
Power DRAM System,” in HPCA, 2017.

[85] Y. Lee, S. Kim, S. Hong, and J. Lee, “Skinflint DRAM System: Minimiz-
ing DRAM Chip Writes for Low Power,” in HPCA, 2013.

[86] K. M. Lepak and M. H. Lipasti, “On the Value Locality of Store Instruc-
tions,” in ISCA, 2000.

[87] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in MICRO,
2009.

[88] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experi-
mental Study of Data Retention Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms,” in ISCA, 2013.

[89] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” in ISCA, 2012.

[90] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A Software
Memory Partition Approach for Eliminating Bank-Level Interference
in Multicore Systems,” in PACT, 2012.

[91] S. Liu, S. O. Memik, Y. Zhang, and G. Memik, “A Power and Tempera-
ture Aware DRAM Architecture,” in DAC, 2008.

[92] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core Proces-
sors,” in ISCA, 2008.

[93] G. H. Loh, “A Register-File Approach for Row Buffer Caches in Die-
Stacked DRAMs,” in MICRO, 2011.

[94] S.-L. Lu, Y.-C. Lin, and C.-L. Yang, “Improving DRAM Latency with
Dynamic Asymmetric Subarray,” in MICRO, 2015.

[95] W.-M. Lu, B.-F. Hung, and M.-S. Huang, “Method for Controlling a
DRAM,” U.S. Patent Appl. 12/116,208, 2009.

[96] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation,” in PLDI, 2005.

[97] H. Luo, T. Shahroodi, H. Hassan, M. Patel, A. G. Yaglikçi, L. Orosa,
J. Park, and O. Mutlu, “CLR-DRAM: A Low-Cost DRAM Architecture
Enabling Dynamic Capacity-Latency Trade-Off,” in ISCA, 2020.

[98] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu,
B. Khessib, K. Vaid, and O. Mutlu, “Characterizing ApplicationMemory
Error Vulnerability to Optimize Data Center Cost via Heterogeneous-
Reliability Memory,” in DSN, 2014.

[99] J. Meza, J. Li, and O. Mutlu, “A Case for Small Row Buffers in Non-
Volatile Main Memories,” in ICCD, 2012.

[100] Micron Technology, Inc., “Calculating Memory System Power for
DDR3,” Technical Note TN-41-01, 2007.

[101] Y. Moon, Y.-H. Cho, H.-B. Lee, B.-H. Jeong, S.-H. Hyun, B.-C. Kim,
I.-C. Jeong, S.-Y. Seo, J.-H. Shin, S.-W. Choi, H.-S. Song, J.-H. Choi,
K.-H. Kyung, Y.-H. Jun, and K. Kim, “1.2V 1.6Gb/s 56nm 6F2 4Gb DDR3
SDRAM with Hybrid-I/O Sense Amplifier and Segmented Sub-Array
Architecture,” in ISSCC, 2009.

[102] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial
of Memory Service in Multi-Core Systems,” in USENIX Security, 2007.

[103] J. Mukundan and J. F. Martínez, “MORSE: Multi-objective Reconfig-
urable Self-Optimizing Memory Scheduler,” in HPCA, 2012.

[104] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda, “Reducing Memory Interference in Multicore Systems
via Application-Aware Memory Channel Partitioning,” inMICRO, 2011.

[105] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A Tool to Model Large Caches,” HP Laboratories, 2009.

327

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

[106] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in
IMW, 2013.

[107] O. Mutlu, “The RowHammer Problem and Other Issues We May Face
As Memory Becomes Denser,” in DATE, 2017.

[108] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” TCAD, 2020.
[109] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Schedul-

ing for Chip Multiprocessors,” in MICRO, 2007.
[110] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:

Enhancing Both Performance and Fairness of Shared DRAM Systems,”
in ISCA, 2008.

[111] O. Mutlu and L. Subramanian, “Research Problems and Opportunities
in Memory Systems,” in SUPERFRI, 2014.

[112] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair Queuing
Memory Systems,” in MICRO, 2006.

[113] M. O’Connor, N. Chatterjee, D. Lee, J.Wilson, A. Agrawal, S.W. Keckler,
and W. J. Dally, “Fine-Grained DRAM: Energy-Efficient DRAM for
Extreme Bandwidth Systems,” in MICRO, 2017.

[114] H. Park, S. Baek, J. Choi, D. Lee, and S. H. Noh, “Regularities Considered
Harmful: Forcing Randomness to Memory Accesses to Reduce Row
Buffer Conflicts for Multi-Core, Multi-Bank Systems,” in ASPLOS, 2013.

[115] M. Patel, J. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-Exact
ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by
Exploiting DRAM Data Retention Characteristics,” in MICRO, 2020.

[116] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and Mod-
eling On-Die Error Correction in Modern DRAM: An Experimental
Study Using Real Devices,” in DSN, 2019.

[117] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): En-
abling the Mitigation of DRAM Retention Failures via Profiling at
Aggressive Conditions,” in ISCA, 2017.

[118] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX
Security, 2016.

[119] S. H. S. Rezaei, M. Modarressi, R. Ausavarungnirun, M. Sadrosadati,
O. Mutlu, and M. Daneshtalab, “NoM: Network-on-Memory for Inter-
Bank Data Transfer in Highly-Banked Memories,” IEEE CAL, 2020.

[120] S. Rixner, “Memory Controller Optimizations for Web Servers,” in
MICRO, 2004.

[121] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory
Access Scheduling,” in ISCA, 2000.

[122] SAFARI Research Group, “Ramulator: A DRAM Simulator — GitHub
Repository.” https://github.com/CMU-SAFARI/ramulator

[123] T. Schloesser, F. Jakubowski, J. v. Kluge, A. Graham, S. Slesazeck,
M. Popp, P. Baars, K. Muemmler, P. Moll, K. Wilson, A. Buerke,
D. Koehler, J. Radecker, E. Erben, U. Zimmermann, T. Vorrath, B. Fis-
cher, G. Aichmayr, R. Agaiby, W. Pamler, T. Schuster, W. Bergner, and
W. Mueller, “6F2 Buried Wordline DRAM Cell for 40nm and Beyond,”
in IEDM, 2008.

[124] H. Seol, W. Shin, J. Jang, J. Choi, J. Suh, and L. S. Kim, “Energy Efficient
Data Encoding in DRAM Channels Exploiting Data Value Similarity,”
in ISCA, 2016.

[125] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry, “The Dirty-Block Index,” in ISCA, 2014.

[126] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Fast Bulk Bitwise AND and OR in
DRAM,” IEEE CAL, 2015.

[127] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry,
“RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization,” in MICRO, 2013.

[128] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A.
Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory
Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technology,” in MICRO, 2017.

[129] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address
Translation to Improve the Spatial Locality of Non-Unit Strided Ac-
cesses,” in MICRO, 2015.

[130] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce
Data Movement,” in Advances in Computers, Volume 106, 2017.

[131] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
in Advances in Computers, 2020, available as arXiv:1905.09822 [cs.AR].

[132] W. Shin, J. Yang, J. Choi, and L.-S. Kim, “NUAT: A Non-Uniform Access
Time Memory Controller,” in HPCA, 2014.

[133] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic Jobscheduling
for a Simultaneous Multithreaded Processor,” in ASPLOS, 2000.

[134] Y. H. Son, S. O, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing Memory
Access Latency with Asymmetric DRAM Bank Organizations,” in ISCA,
2013.

[135] Y. Song and E. Ipek, “More Is Less: Improving the Energy Efficiency
of Data Movement via Opportunistic Use of Sparse Codes,” in MICRO,
2015.

[136] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for Low-Power I/O,”
TVLSI, 1995.

[137] Standard Performance Evaluation Corporation, “SPEC CPU® 2006.”
https://www.spec.org/cpu2006/

[138] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, “The Vir-
tual Write Queue: Coordinating DRAM and Last-Level Cache Policies,”
in ISCA, 2010.

[139] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The
Blacklisting Memory Scheduler: Achieving High Performance and
Fairness at Low Cost,” in ICCD, 2014.

[140] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS:
Balancing Performance, Fairness and Complexity in Memory Access
Scheduling,” TPDS, 2016.

[141] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis, “Micro-Pages: Increasing DRAMEfficiencywith Locality-
Aware Data Placement,” in ASPLOS, 2010.

[142] Transaction Processing Performance Council, “TPC Benchmarks
Overview.” http://www.tpc.org/information/benchmarks5.asp

[143] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking DRAM Design and Organiza-
tion for Energy-Constrained Multi-Cores,” in ISCA, 2010.

[144] H. Usui, L. Subramanian, K. K. Chang, and O. Mutlu, “DASH: Deadline-
Aware High-Performance Memory Scheduler for Heterogeneous Sys-
tems with Hardware Accelerators,” TACO, 2016.

[145] N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O.Mutlu, “The
Locality Descriptor: A Holistic Cross-Layer Abstraction to Express
Data Locality in GPUs,” in ISCA, 2018.

[146] N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko,
E. Ebrahimi, N. Hajinazar, P. B. Gibbons, and O. Mutlu, “A Case for
Richer Cross-layer Abstractions: Bridging the Semantic Gap with
Expressive Memory,” in ISCA, 2018.

[147] Y. Wang, A. Tavakko, L. Orosa, S. Ghose, N. M. Ghiasi, M. Patel, J. S.
Kim, H. Hassan, M. Sadrosadati, and O. Mutlu, “Reducing DRAM
Latency via Charge-Level-Aware Look-Ahead Partial Restoration,” in
MICRO, 2018.

[148] Wei Zhao and Yu Cao, “New Generation of Predictive Technology
Model for Sub-45nm Design Exploration,” in ISQED, 2006.

[149] D. H. Woo, N. H. Seong, and H.-H. S. Lee, “Pragmatic Integration of an
SRAM Row Cache in Heterogeneous 3-D DRAM Architecture Using
TSV,” TVLSI, 2013.

[150] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 Programs: Characterization and Methodological Considerations,” in
ISCA, 1995.

[151] M. Xie, D. Tong, K. Huang, and X. Cheng, “Improving System Through-
put and Fairness Simultaneously in Shared Memory CMP Systems via
Dynamic Bank Partitioning,” in HPCA, 2014.

[152] H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu,
“Row Buffer Locality Aware Caching Policies for Hybrid Memories,” in
ICCD, 2012.

[153] G. L. Yuan, A. Bakhoda, and T. M. Aamodt, “Complexity Effective
Memory Access Scheduling for Many-Core Accelerator Architectures,”
in MICRO, 2009.

[154] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
Bank-AwareMemory Allocator for Performance Isolation onMulticore
Platforms,” in RTAS, 2014.

[155] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-DRAM:
A High-Bandwidth and Low-Power DRAM Architecture from the
Rethinking of Fine-Grained Activation,” in ISCA, 2014.

[156] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang, “Restore Truncation
for Performance Improvement in Future DRAM Systems,” in HPCA,
2016.

[157] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-
Rank: Adaptive DRAM Architecture for Improving Memory Power
Efficiency,” in MICRO, 2008.

[158] W. K. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM
That Maximizes Throughput by Allowing Memory Requests and Com-
mands to Be Issued Out of Order,” U.S. Patent 5,630,096, 1997.

328

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:43:22 UTC from IEEE Xplore. Restrictions apply.

