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Abstract
RowHammer is a circuit-level DRAM vulnerability where re-

peatedly accessing (i.e., hammering) a DRAM row can cause bit
flips in physically nearby rows. The RowHammer vulnerability
worsens as DRAM cell size and cell-to-cell spacing shrink. Recent
studies demonstrate that modern DRAM chips, including chips pre-
viously marketed as RowHammer-safe, are even more vulnerable
to RowHammer than older chips such that the required hammer
count to cause a bit flip has reduced by more than 10X in the last
decade. Therefore, it is essential to develop a better understanding
and in-depth insights into the RowHammer vulnerability of modern
DRAM chips to more effectively secure current and future systems.

Our goal in this paper is to provide insights into fundamental
properties of the RowHammer vulnerability that are not yet rigor-
ously studied by prior works, but can potentially be 𝑖) exploited
to develop more effective RowHammer attacks or 𝑖𝑖) leveraged to
design more effective and efficient defense mechanisms. To this
end, we present an experimental characterization using 248 DDR4
and 24 DDR3 modern DRAM chips from four major DRAM manu-
facturers demonstrating how the RowHammer effects vary with
three fundamental properties: 1) DRAM chip temperature, 2) aggres-
sor row active time, and 3) victim DRAM cell’s physical location.
Among our 16 new observations, we highlight that a RowHammer
bit flip 1) is very likely to occur in a bounded range, specific to each
DRAM cell (e.g., 5.4% of the vulnerable DRAM cells exhibit errors
in the range 70 °C to 90 °C), 2) is more likely to occur if the aggres-
sor row is active for longer time (e.g., RowHammer vulnerability
increases by 36% if we keep a DRAM row active for 15 column
accesses), and 3) is more likely to occur in certain physical regions
of the DRAM module under attack (e.g., 5% of the rows are 2x more
vulnerable than the remaining 95% of the rows). Our study has
important practical implications on future RowHammer attacks
and defenses. We describe and analyze the implications of our new
findings by proposing three future RowHammer attack and six
future RowHammer defense improvements.
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1 Introduction
To maintain competitive DRAM prices, manufacturers focus on

reducing the cost-per-bit of DRAM via DRAM circuit designs and
manufacturing process technology that improve DRAM storage
density, which in turn reduces DRAM cell size and cell-to-cell spac-
ing. Unfortunately, these reductions have been shown to negatively
impact DRAM reliability [92, 98] and expose vulnerabilities such
as RowHammer [71, 72, 101]. RowHammer is an error mechanism
that is caused by hammering, or opening and closing (i.e., activating
and precharging), a DRAM row (i.e., aggressor row) many times,
which can cause bit flips in physically-nearby rows (i.e., victim
rows) [29, 58, 72, 99, 101, 110, 111, 127, 153, 164–166]. RowHammer
has gained attention in both academia and industry, and various
attacks have exploited the RowHammer vulnerability to escalate
privilege, leak private data, and manipulate critical application out-
puts [1, 10, 13, 20, 21, 26, 27, 33, 34, 39, 43, 49, 56, 78, 85, 99, 101, 118,
119, 122, 129, 133, 145, 150, 151, 156, 158, 167, 171].1 To make mat-
ters worse, recent experimental studies [20, 27, 71, 72, 99, 101] have
found that the RowHammer vulnerability is becoming more severe
in newer DRAM chip generations. For example, as shown in [71],
chips manufactured in 2020 can experience RowHammer bit flips
after an order of magnitude fewer row activations compared to the
chips manufactured in 2014 [72]. As the RowHammer vulnerability
worsens, ensuring RowHammer-safe operation becomes more ex-
pensive in terms of performance overhead, energy consumption,
and hardware complexity [71, 112, 163]. Therefore, it is critical to
understand RowHammer in greater detail with in-depth insights

1A survey of RowHammer studies and attacks can be found in [101].
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into how the RowHammer vulnerability varies under different con-
ditions in order to develop more effective and efficient solutions
for the security and reliability of current and future DRAM-based
computing systems.

Our goal in this paper is to provide insights into fundamental
properties of the RowHammer vulnerability that are not yet rigor-
ously studied by prior works, but can potentially be 𝑖) exploited
to develop more effective RowHammer attacks or 𝑖𝑖) leveraged to
design more effective and efficient defense mechanisms. To this end,
we provide a rigorous experimental characterization of 248 DDR4
and 24 DDR3 modern DRAM chips from four major manufacturers
to understand how RowHammer vulnerability changes with three
fundamental properties of a RowHammer attack: 1) DRAM chip
temperature, 2) aggressor row active time, and 3) victim DRAM
cell’s physical location. This is the first paper that rigorously ana-
lyzes these three properties.

Based on our novel characterization results, we make 16 new ob-
servations and share 6 key takeaway lessons from our observations.
We leverage these observations to propose three RowHammer at-
tack and six RowHammer defense improvements. From our 16 new
observations, we highlight three observations that are especially
important. First, we find that each vulnerable DRAM cell can expe-
rience a RowHammer bit flip only within a bounded temperature
range. This range can be as narrow as 5 °C or as wide as 40 °C (in
our tested chips). Second, when the aggressor row’s active time is
longer (e.g., by 5×), 1) more DRAM cells (6.9× on average) experi-
ence RowHammer bit flips at a given hammer count and 2) a DRAM
row experiences RowHammer bit flips at a smaller hammer count
(by 36% on average). Third, a small fraction of DRAM rows in a
DRAMmodule (5%/1%) are significantly (2.0×/1.6×) more vulnerable
to RowHammer than the rest (95%/99%) of the module.

To study RowHammer effects at the circuit level, we disable
RowHammer mitigation mechanisms in the real DRAM chips we
characterize. For each experiment, we 1) perform a double-sided
RowHammer attack [71, 72, 133], in which both physically-adjacent
aggressor rows of the victim row are repeatedly accessed (i.e., ham-
mered), and 2) maintain a high-precision (i.e., error of at most
±0.1 °C) temperature-controlled environment for DRAM. We con-
duct three main analyses in our characterization study.

First, we investigate the effects of temperature on both 1) the
number of bit flips in a DRAM row, referred to as bit error rate (𝐵𝐸𝑅)
and 2) the minimum hammer count value at which the first bit error
is observed (HCfirst) in a victim DRAM row under RowHammer
attack. Our 𝐵𝐸𝑅 analysis demonstrates that a vulnerable DRAM
cell experiences bit flips in a specific and bounded range of tem-
perature, which can be as narrow as 5 °C, or as wide as 40 °C. Our
𝐵𝐸𝑅 analysis also shows that the effect of temperature on the 𝐵𝐸𝑅
of a DRAM chip highly depends on the DRAM chip manufacturer.
For example, DRAM chips of one manufacturer show increasing
𝐵𝐸𝑅 with temperature, whereas DRAM chips from another manu-
facturer show decreasing 𝐵𝐸𝑅 with temperature. Our analysis of
HCfirst demonstrates that the RowHammer vulnerability tends to
worsen as temperature increases.

Second, we test the sensitivity of RowHammer bit flips to the
active time of an aggressor row. To do so, we change the time
between an aggressor row activation to the succeeding precharge
command from 34.5 ns to 154.5 ns with 30 ns steps while the total

hammer count is fixed at a given value. Using this methodology we
analyze the variation in bothHCfirst and𝐵𝐸𝑅. We observe that as the
time between the aggressor row activation and precharge command
increases, DRAM cells become more vulnerable to RowHammer.

Third, we analyze how RowHammer vulnerability varies based
on the physical location of a DRAM cell. We observe that HCfirst
significantly varies across rows such that only a small fraction
of DRAM rows (5%/1%) exhibit significantly higher RowHammer
vulnerability (2.0×/1.6× lower HCfirst values on average across all
four manufacturers) than the rest of the rows (95%/99%).

Based on our new observations, we describe and analyze
three (six) improvements to increase the effectiveness of existing
RowHammer attacks (defense mechanisms).

We make the following contributions in this work:
◦ We present the first rigorous experimental study that examines
temperature effects on RowHammer bit flips in modern DRAM
chips. Our tests using 248 DDR4 and 24 DDR3 modern DRAM
chips from four major manufacturers demonstrate that a DRAM
cell experiences bit flips in a specific and bounded range of tem-
perature and the RowHammer vulnerability tends to worsen as
temperature increases.

◦ We experimentally demonstrate, for the first time, how RowHam-
mer vulnerability changes with the active time of the aggressor
rows. Our results show that as the aggressor row’s active time
increases (e.g., by 5×), 1) more DRAM cells (6.9× on average)
experience RowHammer bit flips at a given hammer count and
2) a DRAM row experiences RowHammer bit flips at a smaller
hammer count (by 36% on average).

◦ We demonstrate that a DRAM cell’s RowHammer vulnerabil-
ity significantly depends on the cell’s location. We observe that
only a small fraction of DRAM rows (5%/1%) exhibit significantly
higher RowHammer vulnerability (2.0×/1.6× lower HCfirst val-
ues) than the rest (95%/99%) of the rows.

◦ Based on our new observations on RowHammer’s sensitivities
to temperature, aggressor row’s active time, and a victim DRAM
cell’s physical location in the DRAM chip, we describe and ana-
lyze three future RowHammer attack and six future RowHammer
defense improvements.

2 Background
We provide a brief background on DRAM organization, DRAM

access timings, and RowHammer vulnerability. For more detailed
background on these, we refer the reader to many prior works [16–
19, 27, 30, 37, 38, 40, 47, 61–64, 68–74, 79, 81, 82, 86, 87, 89, 97, 102,
103, 108, 114–116, 121, 134–137, 143, 154, 155, 170].

2.1 DRAM Organization
Fig. 1 depicts the hierarchical organization of DRAM-based main

memory. Thememory controller in a system is typically connected to
multiple DRAMmodules via multiple DRAM channels. Each channel
operates independently. A DRAM module has one or more ranks,
each of which consisting of multiple DRAM chips that operate
in lock-step. The memory controller can interface with multiple
DRAM ranks by time-multiplexing the channel’s I/O bus between
the ranks. Because the I/O bus is shared, the memory controller
serializes accesses to different ranks in the same channel. A DRAM
chip is organized into multiple DRAM banks. DRAM banks in a
DRAM chip share a common I/O circuitry.
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Fig. 1: DRAM organization.

DRAM cells in a DRAM bank are laid out in a two-dimensional
structure of rows and columns. Each DRAM cell on a DRAM row
is connected to a common wordline via access transistors. A bitline
connects a column of DRAM cells to a DRAM sense amplifier to
access and manipulate data. The two-dimensional array structure
of DRAM cells is typically partitioned into multiple DRAM subar-
rays [17, 74, 134]. Each subarray is connected to sense amplifiers
that enable sensing of data, called local row buffers.

2.2 DRAM Access Timings
The memory controller accesses DRAM locations via three major

steps. First, the memory controller issues an 𝐴𝐶𝑇 command to
activate a specific row within a bank, which prepares the row for
a column access. Second, the memory controller issues a 𝑅𝐷 or
𝑊𝑅 command to read or write to a column in the row, respectively.
Third, once all column operations to the active row are complete,
the memory controller issues a precharge (𝑃𝑅𝐸) command, which
closes the row and prepares the bank for a new activation.

To guarantee correct DRAM operation, the memory controller
must observe standardized timings between consecutive commands,
called timing parameters [74, 80, 81]. Timing parameters ensure
that the internal DRAM circuitry has sufficient time to perform the
operations required by the command. In this work, we deal with
two key timings: 1) the minimum time that a row should stay active
before a precharge command is issued to the bank (𝑡𝑅𝐴𝑆 ) and 2) the
minimum time a precharge command needs to complete before a
row is activated in the same bank (𝑡𝑅𝑃 ). 𝑡𝑅𝐴𝑆 ensures that the DRAM
sense amplifiers have enough time following a row activation to
correctly restore the charge in all cells in the open row before the
row is closed. 𝑡𝑅𝑃 ensures that all bitlines in the subarray are fully
precharged to their idle reference voltage (typically 𝑉𝐷𝐷/2) before
the next row is activated.

2.3 The RowHammer Vulnerability
Modern DRAM chips suffer from an error mechanism, called

RowHammer [71, 72, 101] that happens when a DRAM row (i.e.,
aggressor row) is repeatedly activated enough times before its neigh-
boring rows (i.e., victim rows) get refreshed [29, 58, 71, 72, 99, 101,
110, 111, 127, 153, 164–166]. Due to the aggressive reduction in
manufacturing process technology node size, DRAM cells become
smaller and closer to each other, exacerbating the RowHammer vul-
nerability. Therefore, as DRAM manufacturers continue to increase
DRAM storage density, DRAM chips’ vulnerability to RowHammer
increases [20, 27, 71, 72, 99–101].

The RowHammer vulnerability can be used to reliably induce
bit flips in main memory using various system-level security at-
tacks [1, 10, 13, 20, 21, 26, 27, 33, 34, 39, 43, 49, 56, 78, 85, 99, 101,
118, 119, 122, 129, 133, 145, 150, 151, 156, 158, 167, 171]. Prior work
demonstrates that inducing bit flips via a RowHammer attack is

practical for privilege escalation [33, 34, 56, 85, 122, 133, 150, 158],
denial of service [33, 85], leaking confidential data [78], and ma-
nipulating a critical application’s correctness [43, 167]. Thus, it is
necessary to rigorously understand the RowHammer vulnerabil-
ity of modern DRAM chips, project future attacks, and develop
effective RowHammer defense mechanisms in modern systems that
use DRAM. Through characterization [71, 72, 110, 111] and model-
ing [29, 58, 111, 123, 127, 153, 164–166], past research shows that
circuit-level capacitive coupling [58, 123] and trap-assisted leak-
age [166] have a significant effect on RowHammer bit flips [153].

Based on the understanding provided by prior characterization
and modeling research, a large body of research proposes various
RowHammer defenses [2–7, 14, 24, 29, 31, 37, 54, 59, 66, 72, 76, 83,
112, 127, 138, 141, 151, 162–165, 169]. DRAM manufacturers 1) im-
plement RowHammer prevention mechanisms, generally called
Target Row Refresh (TRR) [27, 53, 54], which perform proprietary
operations within DRAM to prevent RowHammer bit flips (without
success, as shown by [27, 39]) and 2) enhance DRAM communi-
cation protocols with a new feature called refresh management
(𝑅𝐹𝑀) [52, 55]. 𝑅𝐹𝑀 requires the memory controller to count the
number of activations at DRAM bank granularity and issue a com-
mand when the activation count reaches a threshold value. By
doing so, it provides an on-DRAM-die RowHammer defense mecha-
nism (e.g., Silver Bullet [24, 162]) with the necessary time to refresh
victim rows. Despite efforts to contain and defend against RowHam-
mer, the vulnerability still exists and is expected to worsen in the
future [20, 27, 39, 71, 99–101], as clearly demonstrated by recent
work [27, 39, 71].

3 Motivation and Goal
Prior research experimentally demonstrates that RowHam-

mer is clearly a worsening DRAM reliability and security prob-
lem [20, 27, 71, 72, 99–101]. Despite all efforts, newer DRAM chips
are shown to be significantly more vulnerable to RowHammer than
older generation chips [71]. Even DRAM chips that have been mar-
keted as RowHammer-free in 2020 experience RowHammer bit
flips at significantly lower hammer counts (e.g., 9.6K for LPDDR4
chips when TRR protection is disabled [71] and 25K for DDR4
chips when TRR protection is enabled [27]) compared to the DDR3
DRAM chips manufactured in 2014 (e.g., 139K [72]). Many prior
works [2–7, 14, 24, 29, 31, 37, 54, 59, 66, 72, 76, 83, 112, 127, 138,
141, 151, 162–165, 169] have proposed RowHammer defense mech-
anisms to provide RowHammer-safe operation with either proba-
bilistic or deterministic security guarantees. Unfortunately, recent
works [71, 112, 163] have demonstrated that many of these defense
mechanisms will incur significant performance, energy consump-
tion, and/or hardware complexity overheads such that they become
prohibitively expensive when deployed in future DRAM chips [71].

To enable RowHammer-safe operation in future DRAM-based
computing systems in an effective and efficient way, it is critical to
rigorously gain detailed insights into the RowHammer vulnerabil-
ity and its sensitivities to varying attack properties. Unfortunately,
despite the existing research efforts expended towards understand-
ing RowHammer [29, 58, 71, 72, 109–111, 123, 127, 153, 164–166],
scientific literature lacks rigorous experimental observations on
how the RowHammer vulnerability varies with three fundamental
properties: 1) DRAM chip temperature, 2) aggressor row active

3



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Orosa and Yağlıkçı, et al.

time, and 3) victim DRAM cell’s physical location. This lack of un-
derstanding raises very practical and important concerns as to how
the effects of these three fundamental properties can be exploited
to improve both RowHammer attacks and defense mechanisms.

Our goal in this paper is to rigorously evaluate and understand
how the RowHammer vulnerability of a real DRAM chip at the
circuit level changes with 1) temperature, 2) aggressor row active
time, and 3) victim DRAM cell’s physical location in the DRAM chip.
Doing so provides us with a deeper understanding of RowHammer
to enable future research on improving the effectiveness of existing
RowHammer attacks and defense mechanisms. We hope that these
analyses will pave the way for building RowHammer-safe systems
that use increasingly more vulnerable DRAM chips. To achieve this
goal, we rigorously characterize how the RowHammer vulnerability
of 248 DDR4 and 24 DDR3 modern DRAM chips from four major
DRAM manufacturers vary with these three properties.

4 Methodology
We describe our methodology and infrastructure for characteriz-

ing the RowHammer vulnerability in real DRAM modules.

4.1 Testing Infrastructure
We experimentally study 248 DDR4 and 24 DDR3 DRAM chips

across a wide range of testing conditions. We use two different
testing infrastructures: 1) SoftMC [40, 130], capable of precisely
controlling temperature and command timings of DDR3 DRAM
modules and 2) a modified version of this infrastructure that sup-
ports DDR4 chips, also used in [27, 39, 71, 107].

SoftMC. Fig. 2 shows one of our SoftMC setups for testing
DDR4 modules (Fig. 2a). We use two types of Xilinx FPGA boards:
1) Alveo U200 [161] (Fig. 2b) to test DDR4 DIMMs [54, 96], and
2) ML605 [159] to test DDR3 SODIMMs. This infrastructure en-
ables precise control over both DDR4 and DDR3 timings at the
granularity of 1.25 ns and 2.50 ns, respectively. We use a host ma-
chine, connected to our FPGA boards through a PCIe port [117]
(Fig. 2c) to 1) perform the RowHammer tests that we describe in
§4.2 and 2) monitor and adjust the temperature of DRAM chips in
cooperation with the temperature controller (Fig. 2d).

Fig. 2: SoftMC Infrastructure: (a) DRAMmodule under test clamped
with heater pads, (b) Xilinx Alveo U200 FPGA board [161], pro-
grammed with a DDR4 version of SoftMC [40], (c) PCIe connection
to the host machine, and (d) temperature controller.

Temperature Controller. To regulate the temperature in
DRAM modules, we use silicone rubber heaters pressed to both
sides of the DRAMmodule (Fig. 2a). We use a thermocouple, placed
on the DRAM chip to measure the chip’s temperature (similar
to JEDEC standards [50]). A Maxwell FT200 temperature con-
troller [91] (Fig. 2d) 1) monitors a DRAM chip’s temperature using

a thermocouple, and 2) keeps the temperature stable by heating the
chip with heater pads. The temperature controller 1) communicates
with our host machine via an RS485 channel [147] to get a reference
temperature and to report the instant temperature, and 2) controls
the heater pads using a closed-loop PID controller. In our tests using
this infrastructure, we measure temperature with an error of at
most ±0.1 °C. We believe that our temperature measurements from
the DRAM package’s surface accurately represent the DRAM die’s
real temperature because the temperature of the DRAM package
and the DRAM internal components are strongly correlated [95].

4.2 Testing Methodology
Disabling Sources of Interference. Our goal is to directly ob-

serve the circuit-level bit flips such that we can make conclusions
about DRAM’s vulnerability to RowHammer at the circuit tech-
nology level rather than at the system level. To this end, we mini-
mize all possible sources of interference with the following steps.
First, we disable all DRAM self-regulation events (e.g., DRAM Re-
fresh [40, 54, 160]) except calibration related events (e.g., ZQ cal-
ibration for signal integrity [40, 54]). Second, we ensure that all
RowHammer tests are conducted within a relatively short period
of time such that we do not observe retention errors [62, 86, 92,
116, 121]. Third, we use the SoftMC memory controller [40, 130]
so that we can 1) issue DRAM commands with precise control (i.e.,
our commands are not impeded by system-issued accesses), and
2) study the RowHammer vulnerability on DRAM chips without
interference from existing system-level RowHammer protection
mechanisms (e.g., [3, 5–7]). Fourth, we test DRAMmodules that do
not implement error correction codes (ECC) [12, 21, 36, 41, 67, 124].
Doing so ensures that neither on-die [46, 104, 113–115] nor rank-
level [21, 67] ECC can alter the RowHammer bit flips we observe
and analyze. Fifth, we prevent known on-DRAM-die RowHammer
defenses (i.e., TRR [52, 55, 84, 93]) from working by not issuing
refresh commands throughout our tests [27, 71].

RowHammer. All our tests use double-sided RowHammer [71,
72, 133], which activates, in an alternating manner, each of the
two rows (i.e., aggressor rows) that are physically-adjacent to a
victim row. We call this victim row a double-sided victim row. We
define single-sided victim rows as the rows that are hammered in
a single-sided manner by the two aggressor rows (i.e., rows with
+2 or -2 distance from victim row). We define one hammer as a
pair of activations to the two aggressor rows. We perform double-
sided hammering with the maximum activation rate possible within
DDR3/DDR4 command timing specifications [51, 54]. Prior works
report that this is the most effective access pattern for RowHammer
attacks on DRAM chips when RowHammer mitigation mechanisms
are disabled [20, 27, 71, 72, 133].2 We use 150K hammers (i.e., 300K
activations) in our 𝐵𝐸𝑅 experiments.3 We use up to 512K hammers
(i.e., the maximum number of hammers so that our hammer tests
run for less than 64ms) in our HCfirst experiments. Due to time
limitations, we repeat each test five times, and we study the effects
of the RowHammer attack on the 1) first 8K rows, 2) last 8K rows,
and 3) middle 8K rows of a bank in each DRAM chip (similar to [72]).
2Our analysis of aggressor row active time uses a different access sequence that
introduces additional delays between row activations. See §6 for details.
3We find that 150K hammers is low enough to be used in a system-level RowHammer
attack in a real system [27], and it is high enough to provide a large number of bit flips
in all DRAM modules we tested.
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Logical-to-Physical Row Mapping. DRAM manufacturers
use DRAM-internal mapping schemes to internally translate
memory-controller-visible row addresses to physical row ad-
dresses [8, 20, 44, 48, 61, 63, 65, 72, 79, 86, 114, 136, 140, 145, 163],
which can vary across different DRAM modules. We reverse-
engineer this mapping, so that we can identify and hammer aggres-
sor rows that are physically adjacent to a victim row.We reconstruct
the mapping by 1) performing single-sided RowHammer attack on
each DRAM row, 2) inferring that the two victim rows with the
most RowHammer bit flips are physically adjacent to the aggres-
sor row, and 3) deducing the address mapping after analyzing the
aggressor-victim row relationships across all studied DRAM rows.

Data Pattern.We conduct our experiments on a DRAMmodule
by using the module’s worst-case data pattern (𝑊𝐶𝐷𝑃 ). We identify
the𝑊𝐶𝐷𝑃 for each module as the pattern that results in the largest
number of bit flips among seven different data patterns used in
prior works on DRAM characterization [16, 19, 62–65, 71, 79, 80,
86, 116], presented in Table 1: colstripe, checkered, rowstripe, and
random (we also test the complements of the first three). For each
RowHammer test, we write the corresponding data pattern to the
victim row (𝑉 in Table 1), and to the 8 previous (𝑉 − [1...8]) and
next (𝑉 + [1...8]) physically-adjacent rows.

Table 1: Data patterns used in our RowHammer analyses.

Row Address Colstripe† Checkered† Rowstripe† Random

𝑉 ∗ ± [0, 2, 4, 6, 8] 0x55 0x55 0x00 random
𝑉 ∗ ± [1, 3, 5, 7] 0x55 0xaa 0xff random

∗𝑉 is the physical address of the victim row
†We also test the complements of these patterns

Metrics. We measure two metrics in our tests: 1) the minimum
hammer count value at which the first bit error is observed (HCfirst)
and 2) the number of bit flips in a DRAM row, referred to as bit error
rate (𝐵𝐸𝑅). A lower HCfirst or higher 𝐵𝐸𝑅 value indicates higher
RowHammer vulnerability. To quickly identify HCfirst, we perform
a binary search where we use an initial hammer count of 256k.
We repeatedly increase (decrease) the hammer count by Δ if we
observe (do not observe) bit flips in the victim row. The initial value
is Δ = 128𝑘 , and we halve it for each test until it reaches Δ = 512
(i.e., we identify HCfirst with an accuracy of 512 row activations).

Temperature Range. To study the effects of temperature, we
test DRAM chips across a wide range of temperatures, from 50 °C
to 90 °C, with a step size of 5 °C.

4.3 Characterized DRAM Chips
Table 2 summarizes the 248 DDR4 and 24 DDR3 DRAM chips we

test from four major manufacturers. We use a diverse set of modules
with different chip densities, die revisions and chip organizations.
We share analyses of additional modules separately in [128].

Table 2: Summary of DDR4 (DDR3) DRAM chips tested.

Mfr. DDR4
#DIMMs

DDR3
#SODIMMs

#Chips Density Die Org.

Mfr. A 9 1 144 (8) 8Gb (4Gb) B (P) x4 (x8)
Mfr. B 4 1 32 (8) 4Gb (4Gb) F (Q) x8 (x8)
Mfr. C 5 1 40 (8) 4Gb (4Gb) B (B) x8 (x8)
Mfr. D 4 – 32 (–) 8Gb (–) C (–) x8 (–)

5 Temperature Analysis
We 1) provide the first rigorous experimental characterization of
the effects of temperature on the RowHammer vulnerability using
real DRAM chips and 2) present new observations and insights
based on our results.

5.1 Impact of Temperature on DRAM Cells
We analyze the relation between temperature and the RowHam-

mer vulnerability of a DRAM cell using the methodology described
in Section 4.2. To do so, we first cluster vulnerable DRAM cells
by their vulnerable temperature range (i.e., the minimum and max-
imum temperatures within which a cell experiences at least one
RowHammer bit flip across all experiments). Second, we analyze
how the RowHammer bit flips of DRAM cells manifest within their
vulnerable temperature range. Table 3 shows the percentage of vul-
nerable cells that flip in all temperature points of their vulnerable
temperature ranges.

Table 3: Percentage of vulnerable DRAM cells that flip in all temper-
ature points within the vulnerable temperature range of the cell.

Mfr. A Mfr. B Mfr. C Mfr. D

99.1% 98.9% 98.0% 99.2%

Obsv. 1. A DRAM cell is, with a very high probability, vulnerable
to RowHammer in a continuous temperature range specific to the cell.

For example, only 0.9% of the vulnerable DRAM cells in Mfr.
A do not exhibit bit flips in at least one temperature point within
their vulnerable temperature range. Hence, our experiments demon-
strate that a cell exhibits bit flips with very high probability in a
continuous temperature range that is specific to the cell.

To analyze the diversity of vulnerable temperature ranges across
DRAM cells, we cluster all vulnerable DRAM cells according to
their vulnerable temperature ranges. Fig. 3 shows each cluster’s
size as a percentage of the full population of vulnerable cells. The
x-axis (y-axis) indicates the lower (upper) bound of the vulnerable
temperature range. Because we do not test temperatures higher
(lower) than 90 °C (50 °C), the vulnerable temperature ranges with
an upper (lower) limit of 90 °C (50 °C) include cells that also flip at
higher (lower) temperatures. For example, 5.4% of the vulnerable
DRAM cells in Mfr. A fall into the range 70 °C to 90 °C, which
includes cells with actual vulnerable temperature ranges of 70 °C
to 95 °C, 70 °C to 100 °C, etc.
Obsv. 2. A significant fraction of vulnerable DRAM cells exhibit bit
flips at all tested temperatures.

Weobserve that between 9.6% and 29.8% of the cells (x-axis=50 °C,
y-axis=90 °C in Fig. 3) are vulnerable to RowHammer across all
tested temperatures (50 °C to 90 °C) for the four DRAM manufac-
turers. We also verify (not shown) that Obsv. 2 holds for the three
SODIMM DDR3 modules described in Table 2.
Obsv. 3. A small fraction of all vulnerable DRAM cells are vulnera-
ble to RowHammer only in a very narrow temperature range.

For example, 0.4% of all vulnerable DRAM cells of Mfr. A, are only
vulnerable to RowHammer at 70 °C (i.e., a single tested temperature
value). Note that inducing even a single bit flip can be critical for
system security, as shown by prior works [26, 33, 122, 158]. Our
experimental results show that 2.3%, 1.8%, 2.4%, and 1.6% of all
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Fig. 3: Population of vulnerable DRAM cells, clustered by vulnera-
ble temperature range.

tested DRAM cells for Mrfs. A, B, C, and D, respectively, experience
a RowHammer bit flip within a temperature range as narrow as
5 °C. We conclude that some DRAM cells experience RowHammer
bit flips at localized and narrow temperature ranges.

We exploit Obsvs. 1–3 in §8.

Takeaway 1. To ensure that a DRAM cell is not vulnerable to
RowHammer, we must characterize the cell at all operating tem-
peratures.

5.2 Impact of Temperature on DRAM Rows
We analyze the relation between a DRAM row’s RowHammer

vulnerability and temperature in terms of both 𝐵𝐸𝑅 and HCfirst.
BER Analysis. Fig. 4 shows how the 𝐵𝐸𝑅 changes as temper-

ature increases, compared to the mean 𝐵𝐸𝑅 value across all the
samples at 50 °C, for four DRAM manufacturers. In each plot, we
use a point and error bar4 to show the 𝐵𝐸𝑅 change for the victim
row (i.e., distance from the victim row = 0), and the 𝐵𝐸𝑅 change for
the two single-sided victim rows (i.e., distance ±2 from the victim
row), across all rows we test.
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Fig. 4: Percentage change in 𝐵𝐸𝑅 (RowHammer bit flips) with in-
creasing temperature, compared to 𝐵𝐸𝑅 at 50◦C.

Obsv. 4. A DRAM row’s 𝐵𝐸𝑅 can either increase or decrease with
temperature depending on the DRAM manufacturer.
4Each point and error bar represent the mean and the 95% confidence interval across
the samples, respectively.

We observe that the average 𝐵𝐸𝑅 of all three victim rows (one
double-sided victim row and two single-sided victim rows), from
Mfrs. A, C, and D increases with temperature, whereas the 𝐵𝐸𝑅
of rows from Mfr. B decreases as temperature increases. We hy-
pothesize that the difference between these trends is caused by a
combination of DRAM circuit design and manufacturing process
technology differences (see §5.3).

HCfirst Analysis. Fig. 5 shows the distribution of the change
in HCfirst (in percentage) when temperature increases from 50 °C
to 55 °C, and from 50 °C to 90 °C, for the vulnerable rows of the
four manufacturers. The x-axis represents the percentage of all
vulnerable rows, sorted from the most positive HCfirst change to
the most negative HCfirst change. For each curve, we mark the x-
axis point at which the curve crosses the y=0% line. This represents
the percentile of rows whose HCfirst increases with temperature;
e.g., for Mfr. A, when temperature increases from 50 °C to 90 °C,
only 45% (P45) of the tested rows have a higher HCfirst (indicating
reduced vulnerability for that fraction of rows); i.e., most rows
from Mfr. A are more vulnerable at 90 °C than at 50 °C. For clarity,
we only show two temperature changes (i.e., from 50 °C to 55 °C
and from 50 °C to 90 °C), but our observations are consistent across
all intermediate temperature changes we tested (i.e., from 50 °C to
50+Δ◦C, for all Δ’s that are multiples of 5 °C).
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Fig. 5: Distribution of the change inHCfirst across vulnerable DRAM
rows as temperature increases.

Obsv. 5. DRAM rows can show either higher or lower HCfirst when
temperature increases.

We observe that, for all four manufacturers, a significant fraction
of rows can show either higher or lower HCfirst when temperature
increases. For example, when the temperature changes from 50 °C
to 55 °C in Mfr. A, 65% of the rows show higher HCfirst, while 35%
of the rows show lower HCfirst. We conclude that HCfirst changes
differently depending on the DRAM row.
Obsv. 6. HCfirst tends to generally decrease as temperature change
increases.

We observe that, for all four manufacturers, fewer rows have a
higher HCfirst when the temperature delta is larger; i.e., the point
at which each curve crosses the y=0% point shifts left when the
temperature change increases. For example, for Mfr. D, the frac-
tion of vulnerable cells with a higher HCfirst is much larger when
temperature increases from 50 °C to 55 °C (63% of cells) than when
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the temperature increases from 50 °C to 90 °C (40% of cells). We
conclude that the dominant trend is for a row’s HCfirst to decrease
when the temperature delta is larger.
Obsv. 7. The change in HCfirst tends to be larger as the temperature
change is larger.

The HCfirst distribution curve exhibits higher absolute magni-
tudes when temperature changes from 50 °C to 90 °C, compared
to when temperature changes from 50 °C to 55 °C (i.e., the curve
generally rotates right and has much higher peaks at its edges when
the temperature change increases, i.e., going from orange to pur-
ple in the figure). We quantify this observation by calculating the
cumulative magnitude change (i.e., the sum of the absolute values
of the HCfirst change from all rows). Our results show that the cu-
mulative magnitude change (not shown in the figure) is 4.2×, 3.9×,
3.8× and 4.3× larger in Mfrs. A, B, C, and D, respectively, when
the temperature changes from 50 °C to 90 °C, compared to 50 °C to
55 °C. We conclude that a larger change in temperature causes a
larger change in HCfirst.

Takeaway 2. RowHammer vulnerability (i.e., both 𝐵𝐸𝑅 and
HCfirst) tend to worsen as DRAM temperature increases. How-
ever, individual DRAM rows can exhibit behavior different from
this dominant trend.

5.3 Circuit-level Justification
We hypothesize that our observations on the relation between

RowHammer vulnerability and temperature are caused by the non-
monotonic behavior of charge trapping characteristics of DRAM
cells. Yang et al. [166] show a DRAM charge trap model simulated
using a 3D TCAD tool (without real DRAM chip experiments). The
model shows that HCfirst decreases as temperature increases, un-
til a temperature inflection point where HCfirst starts to increase
as temperature increases. According to this model, a cell is more
vulnerable to RowHammer at temperatures close to its tempera-
ture inflection point. We hypothesize that rows within a DRAM
chip might have a wide variety of temperature inflection points,
and thus the average temperature inflection point of a DRAM chip
would determine whether the average RowHammer vulnerabil-
ity increases or decreases with temperature (Obsvs. 1–7). Park et
al. [109, 110] also show an analysis of the relation between HCfirst
and DRAM temperature. Their observations are similar to ours, but
they consider only a small number of DDR3 DRAM cells.

Unlike simulations and limited results reported by [109, 110, 166],
our comprehensive experiments with 272 DRAM chips show that
the temperature inflection points for RowHammer vulnerability
are very diverse across DRAM cells and chips.

6 Aggressor Row Active Time Analysis
We provide the first rigorous characterization of RowHammer

considering the time that the aggressor row stays in the row buffer
(i.e., aggressor row active time). Prior works [109, 110, 153] propose
circuit models and suggest that RowHammer vulnerability of a
victim row can depend on the aggressor row active time based on
preliminary data on a very small number of DRAM cells (i.e., only
one carefully-selected DRAM row from each manufacturer) [109,
110]. However, none of these works conduct a rigorous analysis of
how RowHammer vulnerability varies with aggressor row active

time across a significant population of DRAM rows from real off-
the-shelf DRAM modules.

Fig. 6 describes the three tests we perform in our experiments:
1) Baseline Test, where we use 𝑡𝑅𝐴𝑆 as the time that an aggressor
row stays active, i.e., aggressor row’s on-time (𝑡𝐴𝑔𝑔𝑂𝑛), and we
use 𝑡𝑅𝑃 as the time that the bank stays precharged, i.e., aggressor
row’s off-time (𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 ), 2) Aggressor On Tests, where we increase
𝑡𝐴𝑔𝑔𝑂𝑛 before the row is precharged (compared to 𝑡𝑅𝐴𝑆 in Baseline
Test), and 3) Aggressor Off Tests, where we increase 𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 before
the aggressor row is activated (compared to 𝑡𝑅𝑃 in Baseline Test).
Therefore, for a given hammer count 𝐻𝐶 , the overall attack time
is (𝑡𝐴𝑔𝑔𝑂𝑛 + 𝑡𝑅𝑃 ) × 𝐻𝐶 and (𝑡𝑅𝐴𝑆 + 𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 ) × 𝐻𝐶 for Aggressor
On and Off Tests, respectively, while it is (𝑡𝑅𝐴𝑆 + 𝑡𝑅𝑃 ) × 𝐻𝐶 for
the baseline tests. Our experiments in this section are conducted at
50 °C on the first 1K rows, the last 1K rows, and the 1K rows in the
middle of a bank in our DDR4 chips.

Aggressor
On Tests
Aggressor
Off Tests

tRPBaseline
Tests

tRAS

time

ACT(RowA) PRE tRAS tRP

tAggOfftRAS tRAS

tRPtAggOn

PRE

tAggOn

ACT(RowA)ACT(RowB)

ACT(RowA) PRE PREACT(RowB)

ACT(RowA) PRE PREACT(RowB)

Fig. 6: DRAM command timings for aggressor row active time
(𝑡𝐴𝑔𝑔𝑂𝑛/𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 ) experiments. Purple/Orange color indicates that
an aggressor row is active/precharged.

6.1 Impact of Aggressor Row’s On-Time
Fig. 7 and Fig. 8 show the RowHammer bit flips per row (𝐵𝐸𝑅)

and HCfirst distributions using box plots5 and letter-value plots,6
respectively, across all DRAM chips, as we vary 𝑡𝐴𝑔𝑔𝑂𝑛 from 34.5 ns
(𝑡𝑅𝐴𝑆 ) to 154.5 ns.
Obsv. 8. As the aggressor row stays active longer (i.e., 𝑡𝐴𝑔𝑔𝑂𝑛 in-
creases), more DRAM cells experience RowHammer bit flips and they
experience RowHammer bit flips at lower hammer counts.

We observe that increasing 𝑡𝐴𝑔𝑔𝑂𝑛 from 34.5 ns to 154.5 ns signif-
icantly 1) increases 𝐵𝐸𝑅 by 10.2×, 3.1×, 4.4×, and 9.6× on average
and 2) decreasesHCfirst by 40.0%, 28.3%, 32.7%, and 37.3% on average,
in DRAM chips from Mfrs. A, B, C and D, respectively.
Obsv. 9. RowHammer vulnerability consistently worsens as 𝑡𝐴𝑔𝑔𝑂𝑛

increases in DRAM chips from all four manufacturers.
To see how RowHammer vulnerability changes as 𝑡𝐴𝑔𝑔𝑂𝑛 in-

creases, we examine the coefficient of variation (𝐶𝑉 )7 values of the
𝐵𝐸𝑅 and HCfirst distributions (not shown in the figures). We find
that 𝐶𝑉 decreases by around 15% and 10% for 𝐵𝐸𝑅 and HCfirst, res-
pectively, across all four manufacturers, as 𝑡𝐴𝑔𝑔𝑂𝑛 increases from
34.5 ns to 154.5 ns. This indicates that increasing the aggressor row
5In a box plot [149], the box shows the lower and upper quartile of the data (i.e., the
box spans the 25th to the 75th percentile of the data). The line in the box represents
the median. The bottom and top whiskers each represent an additional 1.5× the inter-
quartile range (IQR, the range between the bottom and the top of the box) beyond the
lower and upper quartile, respectively.
6In a letter-value plot [42], the widest box shows the lower and upper quartile of the
data. The line in the box represents the median. The narrower box extended from
the bottom of the widest box shows the lower octile (12.5th percentile) and the lower
quartile of the data, and the narrower box extended from the top of the widest box
shows the upper octile and the upper quartile of the data, etc.. Boxes are plotted until
all remaining data are outliers. Outliers are defined as the 0.7% extreme values in the
dataset, and are plotted as fliers in the plot.
7𝐶𝑉 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛/𝑎𝑣𝑒𝑟𝑎𝑔𝑒 [25].
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Fig. 7: Distribution of the average number of bit flips per victim row
across chips as aggressor row on-time (𝑡𝐴𝑔𝑔𝑂𝑛) increases.

Fig. 8: Distribution of per-row HCfirst across chips as aggressor row
on-time (𝑡𝐴𝑔𝑔𝑂𝑛) increases.

active time consistently worsens RowHammer vulnerability across
the DRAM chips we test.

We conclude from Obsvs. 8 and 9 that increasing 𝑡𝐴𝑔𝑔𝑂𝑛 makes
victim DRAM cells much more vulnerable to a RowHammer attack.
We exploit these observations in §8.

Takeaway 3. As an aggressor row stays active longer, victim
DRAM cells become more vulnerable to RowHammer.

6.2 Impact of Aggressor Row’s Off-Time
Figs. 9 and 10 show the 𝐵𝐸𝑅 and HCfirst distributions, respec-

tively, as we vary 𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 from 16.5 ns (𝑡𝑅𝑃 ) to 40.5 ns.8

Obsv. 10. As the bank stays precharged longer (i.e., 𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 in-
creases), fewer DRAM cells experience RowHammer bit flips and they
experience RowHammer bit flips at higher hammer counts.

We observe that increasing 𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 from 16.5 ns to 40.5 ns signif-
icantly 1) decreases 𝐵𝐸𝑅 by 6.3×, 2.9×, 4.9×, and 5.0× on average,
and 2) increasesHCfirst by 33.8%, 24.7%, 50.1%, and 33.7% on average,
in DRAM chips from Mfrs. A, B, C, and D, respectively.
Obsv. 11. RowHammer vulnerability consistently reduces as
𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 increases in DRAM chips from all four manufacturers.

We observe that the𝐶𝑉 of HCfirst (not shown in the figures) does
not increase for any manufacturer as we increase 𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 . Hence,
the level of reduction in RowHammer vulnerability is similar across
different rows’ most vulnerable cells. In contrast, the 𝐶𝑉 of 𝐵𝐸𝑅
8Statistical configurations of the box and letter-value plots in Figs. 9 and 10 are identical
to those in Figs. 7 and 8, respectively.

Fig. 9: Distribution of the average number of bit flips per victim row
across chips as aggressor row off-time (𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 ) increases.

Fig. 10: Distribution of per-rowHCfirst across chips as aggressor row
off-time (𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 ) increases.

increases by 18% on average for all four manufacturers, indicating
that the level of reduction in RowHammer vulnerability is different
across different rows.

We conclude from Obsvs. 10 and 11 that increasing 𝑡𝐴𝑔𝑔𝑂𝑓 𝑓

makes it harder for a RowHammer attack to be successful. We
exploit this to improve RowHammer defense mechanisms in §8.2.

Takeaway 4. RowHammer vulnerability of victim cells decreases
when the bank is precharged for a longer time.

6.3 Circuit-level Justification
Prior work explains two circuit- and device-level mechanisms,

causing RowHammer bit flips: 1) electron injection into the vic-
tim cell [153, 164], and 2) wordline-to-wordline cross-talk noise
between aggressor and victim rows that occurs when the aggressor
row is being activated [127, 153]. We hypothesize that increasing
the aggressor row’s active time (𝑡𝐴𝑔𝑔𝑂𝑛) has a larger impact on
exacerbating electron injection to the victim cell, compared to the
reduction in cross-talk noise due to lower activation frequency.
Thus, RowHammer vulnerability worsens when 𝑡𝐴𝑔𝑔𝑂𝑛 increases,
as our Obsvs. 8 and 9 show.

On the other hand, increasing a bank’s precharged time (𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 )
decreases RowHammer vulnerability (Obsvs. 10 and 11) because
longer 𝑡𝐴𝑔𝑔𝑂𝑓 𝑓 reduces the effect of cross-talk noise without affect-
ing electron injection (since 𝑡𝐴𝑔𝑔𝑂𝑛 is unchanged). We leave the
detailed device-level analysis and explanation of our observations
to future works.
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7 Spatial Variation Analysis
We provide the first rigorous spatial variation analysis of

RowHammer across DRAM rows, subarrays, and columns. Prior
work [71, 72, 109–111] analyzes RowHammer vulnerability at the
DRAM bank granularity across many DRAM modules without pro-
viding analysis of the variation of this vulnerability across rows,
subarrays, and columns. We provide this analysis and show that it
is useful for improving both attacks and defense mechanisms. Our
experiments in this section are conducted at 75 °C.

7.1 Variation Across DRAM Rows
Fig. 11 shows the distribution of HCfirst values across all vul-

nerable DRAM rows among the rows we test (§4.2). For each row,
we plot the minimum HCfirst value observed across 5 repetitions
of the test. Each subplot shows DRAM modules from a different
manufacturer, and each curve corresponds to a different DRAM
module. The x-axis shows all the tested rows, sorted by decreasing
HCfirst and marked with percentiles ranging from P1 to P99.
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Fig. 11: Distribution of HCfirst across vulnerable DRAM rows. Each
curve represents a different tested DRAMmodule.

Obsv. 12. A small fraction of DRAM rows are significantly more
vulnerable to RowHammer than the vast majority of the rows.

HCfirst varies significantly across rows. We observe that 99%,
95%, and 90% of tested rows exhibit HCfirst values that are at least
1.6×, 2.0×, and 2.2× greater than the most vulnerable row’s HCfirst,
on average across all four manufacturers. For example, the lowest
HCfirst across all tested rows in a DRAM module from Mfr. B is
33K, while 99%, 95%, and 90% of the rows in the same module
exhibit HCfirst values equal to or greater than 48.5K, 60.5K, and 64K,
respectively. Therefore, we conclude that a small fraction of DRAM
rows are significantly more vulnerable to RowHammer than the
vast majority of the rows.

The large variation in HCfirst across DRAM rows can enable
future improvements in low-cost RowHammer defenses (§8.2).

7.2 Variation Across Columns
Fig. 12 shows the distribution of the number of RowHammer bit

flips across columns in eight representative DRAM chips from each
of all four manufacturers. For each DRAM chip (y-axis), we count
the bit flips in each column (x-axis) across all 24K tested rows. The
color-scale next to each subplot shows the bit flip count: a brighter
color indicates more bit flips.
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Fig. 12: RowHammer bit flip distribution across columns in repre-
sentative DRAM chips from four different manufacturers.

Obsv. 13. Certain columns are significantly more vulnerable to
RowHammer than other columns.

All chips show significant variation in 𝐵𝐸𝑅 across columns. For
example, the difference between the maximum and the minimum
bit flip counts per column is larger than 100 in modules from all
four manufacturers. Except for the module from Mfr. B, where ev-
ery column shows at least 6 bit flips, all the other tested modules
have a considerable fraction of columns where no bit flip occurs
(27.80%/31.10%/9.96% in Mfr. A/C/D), along with a very small fac-
tion of columns with more than 100 bit flips (0.59%/0.01%/0.61%
in Mfr. A/C/D). Therefore, we conclude that certain columns are
significantly more vulnerable to RowHammer than other columns.

To better understand this column-to-column variation, we study
how RowHammer vulnerability varies between columns within a
single DRAM chip and across different DRAM chips. Understand-
ing this variation can provide insights into the impact of circuit
design on a column’s RowHammer vulnerability, which is impor-
tant for understanding and overcoming RowHammer. A smaller
variation in a column’s RowHammer vulnerability across chips
indicates a stronger influence of design-induced variation [68, 79],
while a larger variation across chips that implement the same de-
sign indicates a stronger influence of manufacturing process varia-
tion [16, 19, 69, 70, 80, 86, 87, 116]. To differentiate between these
two sources of variation in our experiments, we cluster every col-
umn in a given DRAM module based on two metrics. The first
metric is the column’s relative RowHammer vulnerability, defined
as the column’s 𝐵𝐸𝑅, normalized to the maximum 𝐵𝐸𝑅 across all
columns in the same module. The second metric is the RowHam-
mer vulnerability variation at a column address. We quantify the
variation using the coefficient of variation (𝐶𝑉 ) of the relative
RowHammer vulnerability in columns with the same column ad-
dress from different DRAM chips. Fig. 13 shows a two-dimensional
histogram with the relative RowHammer vulnerability (y-axis) and
Rowhammer vulnerability variation (x-axis) uniformly quantized
into 11 buckets each (i.e., 121 total buckets across each subplot).9
Each bucket is illustrated as a rectangle containing a percentage
value, which shows the percent of all columns that fall within the
bucket. Empty buckets are omitted for clarity.
Obsv. 14. Both design and manufacturing processes may affect a
DRAM column’s RowHammer vulnerability.

We find that 50.9% and 16.6%10 of all vulnerable columns in
DRAM modules from Mfrs. B and C have 𝐶𝑉=0.0, which indicates

9We plot the x-axis as saturated at 1.0 because a 𝐶𝑉 > 1 means that the standard
deviation is larger than the average, i.e., the variation is very large across chips.
10These numbers represent the population of columns whose𝐶𝑉 across chips is zero,
i.e., sum of all annotated percentage values where𝐶𝑉 =0.
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Fig. 13: Population of DRAM columns, clustered by relative
RowHammer vulnerability.

that each of these columns exhibit the same level of RowHammer
vulnerability consistently across all DRAM chips in a module. This
consistency across chips implies that systematic variation is present,
induced by a chip’s design [16, 18, 68, 79–81, 142, 152]. In contrast,
59.8%, 30.6%, and 29.1% of vulnerable columns in DRAM modules
from Mfrs. A, C, and D show a very large variation across chips
(𝐶𝑉=1.0). This large variation across chips suggests that manufac-
turing process variation is also a significant factor in determining a
given DRAM column’s RowHammer vulnerability.

We conclude from Obsvs. 12–14 that there is significant variation
in RowHammer vulnerability across DRAM rows, columns, and
chips. These observations are useful for 1) crafting attacks that
target vulnerable locations (see §8.1) or 2) improving defense mech-
anisms and error correction schemes that exploit the heterogeneity
of vulnerability across DRAM rows and columns (see §8.2).

Takeaway 5. RowHammer vulnerability significantly varies
across DRAM rows and columns due to both design-induced and
manufacturing-process-induced variation.

7.3 Variation Across Subarrays
We analyze the RowHammer vulnerability of individual subar-

rays across DRAM chips. Since subarray boundaries are not publicly
available, we conservatively assume a subarray size of 512 rows as
reported in prior work [17, 68, 74, 79, 152].11

Fig. 14 shows the variation of HCfirst characteristics in a DRAM
bank across subarrays both 1) in a DRAM module and 2) across
modules from the same manufacturer. Each color-marker pair rep-
resents a different DRAM module. We represent the HCfirst of a
subarray in terms of 1) the average (x-axis) and 2) the minimum
(y-axis) ofHCfirst across the subarray’s rows. For each manufacturer,
we annotate a dashed line that fits to the data via linear regression
with the specified 𝑅2-score [157].
Obsv. 15. The most vulnerable DRAM row in a subarray is signifi-
cantly more vulnerable than the other rows in the subarray.

Wemake two observations from Fig. 14. First, the average HCfirst
across all rows in a subarray is on the order of 2× the most vulner-
able row’s HCfirst, i.e., the minimum HCfirst. Therefore, the most
vulnerable row in a subarray is significantly more vulnerable than
11We verify this for some of our chips by performing 1) single-sided RowHammer
attack tests [71, 72] that induce bit flips in both rows adjacent to the aggressor row if
the aggressor row is not at the edge of a subarray and 2) RowClone tests [28, 107, 134]
that can successfully copy data only between two rows within the same subarray.
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Fig. 14: HCfirst variation across subarrays. Each subarray is repre-
sented by the average (x-axis) and the minimum (y-axis) HCfirst
across the rows within the subarray.

the other rows in the same subarray. Second, this relation between
the minimum and average HCfirst values is similar across subarrays
from different modules from the same manufacturer, and thus can
be modeled using a linear regression. For example, the minimum
HCfirst value in a subarray from Mfr. C can be estimated using a
well-fitting linear model with a 𝑅2-score of 0.93. This observation is
important because it indicates an underlying relationship between
the average and minimum HCfirst values across subarrays. For ex-
ample, although subarrays in module C0 have significantly larger
HCfirst values than subarrays from module C3, a the linear model
accurately expresses the relationship between both subarray’s min-
imum and average HCfirst values. Therefore, given a module from
Mfr. C, the data shows that it may be possible to predict the min-
imum (worst-case) HCfirst values of another module’s subarrays,
given the average HCfirst values of those subarrays.

We conclude from these two observations that 1) the most vul-
nerable DRAM row in a subarray is significantly more vulnerable
than the other rows in the subarray and 2) the worst-case HCfirst
in a subarray can be predicted based on the average HCfirst values
and the linear models we provide.

To analyze and quantify the similarity between the RowHammer
vulnerability of different subarrays, we statistically compare each
subarray against all other subarrays from the samemanufacturer. To
compare two given subarrays, we first compare theirHCfirst distribu-
tions using Bhattacharyya distance (𝐵𝐷) [11], which is used to mea-
sure the similarity of two statistical distributions. Second, for each
pair of subarrays (𝑆𝐴 and 𝑆𝐵 ), we normalize 𝐵𝐷 to the 𝐵𝐷 between
the first subarray 𝑆𝐴 and itself: 𝐵𝐷𝑛𝑜𝑟𝑚 = 𝐵𝐷 (𝑆𝐴, 𝑆𝐵)/𝐵𝐷 (𝑆𝐴, 𝑆𝐴).
Therefore, 𝐵𝐷𝑛𝑜𝑟𝑚 is 1.0 if two distributions are identical, while
𝐵𝐷𝑛𝑜𝑟𝑚 value gets farther from 1.0 as the variation across two
distributions increases. Fig. 15 shows the cumulative distribution
of 𝐵𝐷𝑛𝑜𝑟𝑚 values for subarray pairs from 1) the same DRAM mod-
ule and 2) different DRAM modules. We annotate P5, P95, and the
central P90 of the total population (y-axis) to show the range of
𝐵𝐷𝑛𝑜𝑟𝑚 values in common-case.
Obsv. 16. HCfirst distributions of subarrays within a DRAM mod-
ule exhibit significantly more similarity to each other than HCfirst
distributions of subarrays from different modules.

We observe that, when both 𝑆𝐴 and 𝑆𝐵 are from the same DRAM
module (orange curves), the central 90th percentile (i.e., between 5%
and 95% of the population, as marked in Fig. 15) of all subarray pairs
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Fig. 15: Cumulative distribution of normalized Bhattacharyya dis-
tance values between HCfirst distributions of different subarrays
from 1) the same DRAMmodule and 2) different DRAMmodules

exhibit 𝐵𝐷𝑛𝑜𝑟𝑚 values close to 1.0 (e.g., 𝐵𝐷𝑛𝑜𝑟𝑚 = 0.975 at the 5th
percentile for Mfr. C), which means that their HCfirst distributions
are very similar. In contrast, 𝐵𝐷𝑛𝑜𝑟𝑚 values from different modules
(purple curves) show a significantly wider distribution, especially
for Mfrs. B and C (e.g., 𝐵𝐷𝑛𝑜𝑟𝑚 = 0.66 at the 5th percentile for Mfr.
C). From this analysis, we conclude that the HCfirst distribution
within a subarray can be representative of other subarrays from
the same DRAM module (e.g., Mfrs. B and C), while the HCfirst
distribution within a subarray is often not representative of that of
other subarrays for different DRAM modules.

Obsvs. 15 and 16 can be useful for improving DRAM profiling
techniques and RowHammer defense mechanisms (§8.2).

Takeaway 6. HCfirst distribution in a subarray 1) contains a
diverse set of values and 2) is similar to other subarrays in the
same DRAM module.

7.4 Circuit-level Justification
We observe that RowHammer vulnerability significantly varies

across DRAM rows, columns, and chips, while different subarrays
in the same chip exhibit similar vulnerability characteristics.

Variation across rows, columns, and chips.We hypothesize
that two distinct factors cause the variation in RowHammer vul-
nerability that we observe across rows, columns, and chips.

First, manufacturing process variation causes differences in cell
size and bitline/wordline impedance values, which introduces vari-
ation in cell reliability characteristics within and across DRAM
chips [16, 19, 69, 70, 80, 86, 87, 107, 108, 116]. We hypothesize that
similar imperfections in the manufacturing process (e.g., variation
in cell-to-cell and cell-to-wordline spacings) cause RowHammer
vulnerability to vary between cells in different DRAM chips.

Second, design-induced variation causes cell access latency char-
acteristics to vary deterministically based on a cell’s physical loca-
tion in the memory chip (e.g., its proximity to I/O circuitry) [68, 79].
In particular, prior work [79] shows that columns closer to word-
line drivers (which are typically distributed along a row) can be
accessed faster. Similarly, we hypothesize that columns that are
closer to repeating analog circuit elements (e.g., wordline drivers,
voltage boosters) more sensitive to RowHammer disturbance than
columns that are farther away from such elements.

Similarity across subarrays. Prior works [68, 79] demonstrate
similar DRAM access latency characteristics across different sub-
arrays. This is because a cell’s access latency is dominated by its
physical distance from the peripheral structures (e.g., local sense

amplifiers and wordline drivers) within the subarray [16, 18, 68, 79–
81, 142, 152], causing corresponding cells in different subarrays to
exhibit similar access latency characteristics. We hypothesize that
different subarrays in a DRAM chip exhibit similar RowHammer
vulnerability characteristics for a similar reason. We leave further
analysis and validation of these hypotheses for future work.

8 Implications
The observations we make in §5-§7 can be leveraged for both

1) crafting more effective RowHammer attacks and 2) developing
more effective and more efficient RowHammer defenses.

8.1 Potential Attack Improvements
Our new observations and characterization data can help im-

prove the success probability of a RowHammer attack. We propose
three attack improvements based on our analyses of temperature
(§5), aggressor row active time (§6), and spatial variation (§7).

Improvement 1. Obsvs. 1–3 can be used to craft more effective
RowHammer attacks where the attacker can control or monitor the
DRAM temperature. Obsvs. 1–3 show that a DRAM cell is more
vulnerable to RowHammer within a specific temperature range. An
attacker that can monitor the DRAM temperature (e.g., a malicious
employee in a datacenter or an attacker who performs a remote
RowHammer attack [85, 146] on a physically accessible IoT device)
can increase the chance of a bit flip in two ways. First, the attacker
can force the sensitive data to be stored in the DRAM cells that
are more vulnerable at the current operating temperature, using
known techniques [33, 122]. Second, the attacker can heat up or
cool down the chip to a temperature level at which the cells that
store sensitive data become more vulnerable to RowHammer. As a
result, the attacker can significantly reduce the hammer count, and
consequently, the attack time, necessary to cause a bit flip, thereby
reducing the probability of being detected. For example, without our
observations, an attacker might choose an aggressor row based on
an uninformed decision with respect to temperature characteristics.
In such a case, the chosen row could require a hammer count larger
than 100K (Fig. 11). However, by leveraging our Obsvs. 1–3, an
attacker can make a more informed decision and choose a row
whose HCfirst reduces by 50% (Fig. 5) at the temperature level the
attack is designed to take place.

Improvement 2. Obsv. 3 can be used to enable a new RowHam-
mer attack variant as a temperature-dependent trigger of the main
attack (which could be a RowHammer attack, or some other se-
curity attack). Obsv. 3 demonstrates that some DRAM cells are
vulnerable to RowHammer in a very narrow temperature range. To
implement a temperature-dependent trigger using a RowHammer
bit flip, an attacker can place the victim data in a row that contains
a cell that flips at the target temperature, which allows the attacker
to determine whether or not the target temperature is reached to
trigger the main attack. This could be useful for an attacker in two
scenarios: 1) to trigger the attack only when a precise temperature
is reached (e.g., triggering an attack against an IoT device in the field
when the device is heated or cooled), and 2) to identify abnormal
operating conditions (e.g., triggering the attack during peak hours
by using cells whose vulnerable temperature ranges are above the
common DRAM chip temperature). For example, to detect that
the temperature of a DRAM chip is precisely 60 °C (above 60 °C)
an attacker can use the cells with a vulnerable temperature range
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of 60 °C–60 °C (all ranges with lower limit equal or higher than
60 °C), which are 0.3%/0.3%/0.3%/0.2% (90.7%/86.3%/91.4%/91.7%) of
all vulnerable cells in Mfrs. A/B/C/D (Fig. 3).

Improvement 3. Obsv. 8 shows that keeping an aggressor row
active for a longer time results in more bit flips and lower HCfirst
values, which can be used to craft more powerful RowHammer
attacks. For example, an attacker can increase the aggressor row
active time by issuing more READ commands to the aggressor
row, which can potentially 1) increase the number of bit flips for a
given hammer count, or 2) defeat already-deployed RowHammer
defenses [4, 24, 83, 112, 138, 141, 162, 163, 169] by inducing bit
flips at a smaller hammer count than the HCfirst value used for
configuring a defense mechanism. For example, issuing 10 to 15
READ commands per aggressor row activation can increase the
aggressor row active time by about 5×, increasing 𝐵𝐸𝑅 by 3.2×–
10.2× or causing bits to flip at a hammer count that is 36% smaller
than the HCfirst value that may be used to configure a defense
mechanism that does not consider our Observation 8.

8.2 Potential Defense Improvements
Our characterization data can potentially be used in five ways

to improve RowHammer defense methods.
Improvement 1. Obsv. 12 shows that there is a large spatial

variation in HCfirst across rows. A system designer can leverage this
observation to make existing RowHammer defense mechanisms
more effective and efficient. A limitation of these mechanisms is
that they are configured for the smallest (worst-case) HCfirst across
all rows in a DRAM bank even though an overwhelming majority of
rows exhibit significantly larger HCfirst values. This is an important
limitation because, when configured for a smaller HCfirst value, the
performance, energy, and area overheads of many RowHammer de-
fense mechanisms significantly increase [71, 112, 163]. To overcome
this limitation, a system designer can configure a RowHammer de-
fense mechanism to use different HCfirst values for different DRAM
rows. For example, BlockHammer’s [163] and Graphene’s [112]
area costs can reach approximately 0.6% and 0.5% of a high-end
processor’s die area [163]. However, based on our Obsv. 12, 95% of
DRAM rows exhibit an HCfirst value greater than 2× the worst-case
HCfirst. Therefore, both BlockHammer and Graphene can be config-
ured with the worst-case HCfirst for only 5% of the rows and with
2× HCfirst for the 95% of the rows, drastically reducing their area
costs down to 0.4% and 0.1% of the processor die area, translating to
33% and 80% area cost reduction, respectively.12 Similarly, the most
area-efficient defense mechanism PARA [72] incurs 28% slowdown
on average for benign workloads when configured for an HCfirst
of 1K [71]. This large performance overhead can be halved [71] for
95% of the rows by simply using lower probability thresholds for
less vulnerable rows. We leave the comprehensive evaluation of
such improvements to future work.

Improvement 2. Obsvs. 15 and 16 on spatial variation of HCfirst
across subarrays can be leveraged to reduce the time required to
profile a given DRAM module’s RowHammer vulnerability charac-
teristics. This is an important challenge because profiling a DRAM
module’s RowHammer characteristics requires analyzing several
environmental conditions and attack properties (e.g., data pattern,
12Our preliminary evaluation estimates BlockHammer’s [163] and Graphene’s [112]
area costs for 2×HCfirst , following the methodology described in BlockHammer [163].

access pattern, and temperature), requiring time-consuming tests
that lead to long profiling times [20, 27, 71, 72, 78, 110, 111, 113, 166].
According to our Obsvs. 15 and 16, characterizing a small subset of
subarrays can provide approximate yet reliable profiling data for
an entire DRAM chip. For example, assuming that a DRAM bank
contains 128 subarrays, profiling eight randomly-chosen subarrays
reduces RowHammer characterization time by at least an order of
magnitude. This low-cost approximate profiling can be useful in
two cases. First, finding the HCfirst of a DRAM row requires per-
forming a RowHammer test with varying hammer counts. Profiling
the HCfirst value for a few subarrays can be used to limit the HCfirst
search space for the rows in the rest of the subarrays based on our
Obsv. 16. Second, one can profile a few subarrays within a DRAM
module and use our linear regression models (Obsv. 16) to estimate
the DRAM module’s RowHammer vulnerability for systems whose
reliability and security are not as critical (e.g., accelerators and
systems running error-resilient workloads) [77, 90, 105, 106, 148].

Improvement 3. Obsvs. 1 and 3 show a vulnerable DRAM cell
experiences bit flips at a particular temperature range. To improve a
DRAM chip’s reliability, the systemmight incorporate a mechanism
to temporarily or permanently retire DRAM rows (e.g., via software
page offlining [92] or hardware DRAM row remapping [15, 168])
that are vulnerable to RowHammer within a particular operating
temperature range. To adapt to changes in temperature, the row
retirement mechanism might dynamically adjust the rows that are
retired, potentially leveraging previously-proposed techniques (e.g.,
Rowclone [134], LISA [18], NoM [125], FIGARO [154]) to efficiently
move data between these rows.

Improvement 4. Obsv. 4 demonstrates that overall 𝐵𝐸𝑅 sig-
nificantly increases with temperature across modules from three
of the four manufacturers. To reduce the success probability of a
RowHammer attack, a system designer can improve the cooling
infrastructure for systems that use such DRAM modules. Doing so
can reduce the number of RowHammer bit flips in a DRAM row. For
example, when temperature drops from 90 °C to 50 °C, 𝐵𝐸𝑅 reduces
by 25% on average across DRAM modules from Mfr. A. (see Fig. 4).

Improvement 5. Obsv. 8 shows that keeping an aggressor row
active for a longer time increases the probability of RowHammer bit
flips. Therefore, RowHammer defenses should take aggressor row
active time into account. Unfortunately, monitoring the active time
of all potential aggressor rows throughout an entire refresh window
is not feasible for emerging lightweight on-DRAM-die RowHammer
defense mechanisms [9, 24, 52, 55, 162], because such monitoring
would require substantial storage and logic to track all potential
aggressor rows’ active times. To address this issue, the memory
controller can be modified to limit or reduce the active times of all
rows by changes to memory request scheduling algorithms and/or
row buffer policies (e.g., via mechanisms similar to [32, 45, 60, 73,
97, 102, 103, 126, 143, 144, 163]). In this way, a RowHammer defense
mechanism or the memory controller can inherently keep under
control an aggressor row’s active time. This is an example of a
system-DRAM cooperative scheme, similar to those recommended
by prior work [71, 72, 98, 99, 108].

Improvement 6. Obsvs. 13 and 14 show that RowHammer
vulnerability exhibits significant design-induced variation across
columns within a chip and manufacturing process-induced vari-
ation across chips in a DRAM module. To make error correction

12



A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips
and Implications on Future Attacks and Defenses MICRO ’21, October 18–22, 2021, Virtual Event, Greece

codes (ECC) more effective and efficient at correcting RowHammer
bit flips, a system designer can 1) design ECC schemes optimized for
non-uniform bit error probability distributions across columns and
2) modify the chipkill ECC mechanism [23, 57, 88] to reduce a sys-
tem’s dependency on the most vulnerable DRAM chip, as proposed
in a concurrent work, revisiting ECC for RowHammer [120].

9 Related Work
This is the first work that rigorously and experimentally analyzes

how RowHammer vulnerability changes with three fundamental
properties: 1) DRAM chip temperature, 2) aggressor row active
time, and 3) victim DRAM cell’s physical location.

We divide prior work on RowHammer into four categories: 1) at-
tacks, 2) defenses, 3) characterization of real DRAM chips, and
4) circuit-level simulation-based studies. Two works [99, 101] pro-
vide an overview of the RowHammer literature, and project the
effect of increased RowHammer vulnerability in future DRAM chips
and DRAM-based memory systems.

RowHammer Attacks and Defenses.Many works [1, 10, 13,
20, 21, 26, 27, 33, 34, 39, 43, 49, 56, 78, 85, 99, 101, 118, 119, 122,
129, 133, 145, 150, 151, 156, 158, 167, 171] exploit the RowHammer
vulnerability to induce bit flips in main memory, as §2.3 explains.
These works activate two (double-sided attack [71, 72, 133]) or
more (many-sided attack [27]) aggressor rows, as rapidly as possible,
aiming to maximize the number of RowHammer-induced bit flips.
However, these works do not consider RowHammer’s sensitivities
to temperature, aggressor row active time, and spatial variation.
Similarly, existing RowHammer defense mechanisms [2–7, 14, 24,
31, 37, 52–55, 59, 66, 72, 76, 83, 112, 138, 141, 151, 162, 163, 169]
are not designed to account for these three properties. The new
observations and insights we provide can be used to improve both
RowHammer attacks and defenses, as §8 describes. We leave a full
exploration of such attacks and defenses to future work, as our
goal is to develop a fundamental understanding of RowHammer
properties as opposed to developing new attacks and defenses.

Characterization of Real DRAM Chips. Two major works
extensively characterize the RowHammer vulnerability using real
DRAM chips [71, 72]. The original RowHammer work [72], pub-
lished in 2014, 1) investigates the vulnerability of 129 commod-
ity DDR3 DRAM modules to various RowHammer attack mod-
els, 2) demonstrates for the first time that RowHammer is a real
problem for commodity DRAM chips, 3) characterizes RowHam-
mer’s sensitivity to refresh rate and activation rate in terms of 𝐵𝐸𝑅,
HCfirst, and the physical distance between aggressor and victim
rows, and 4) examines various potential solutions and proposes a
new low-cost mitigation mechanism. The second work [71], pub-
lished in 2020, conducts comprehensive scaling experiments on a
wide range of 1580 DDR3, DDR4, and LPDDR4 commodity DRAM
chips from different DRAM generations and technology nodes,
clearly demonstrating that RowHammer has become an even more
serious problem over DRAM generations. Even though these two
works rigorously characterize various aspects of the RowHammer
vulnerability in real DRAM chips, they do not analyze the effects
of temperature, aggressor row active time, and victim DRAM cell’s
physical location on the RowHammer vulnerability. Our work com-
plements and furthers the analyses of these two papers [71, 72]
by 1) rigorously analyzing how these three properties affect the

RowHammer vulnerability, and 2) providing new insights into craft-
ing more effective and efficient RowHammer attacks and defenses.

Three other works [109–111] present preliminary experimental
data from only three [109, 111] or five [110] DDR3 DRAM chips
to build models that explain how the RowHammer vulnerability
of DRAM cells varies with the three properties we analyze. Un-
fortunately, the experimental data provided by these works is not
rigorous and conclusive enough due to 1) their extremely small
sample set of DRAM cells, rows, and chips and 2) the lack of analy-
sis of system-level implications. Our work, in contrast, 1) rigorously
analyzes the effects of all three properties by testing a significantly
larger set of 272 DRAM chips, and 2) provides insights into resulting
RowHammer attack and defense improvements.

Simulation-based Studies. Prior works [29, 58, 123, 127,
153, 164–166] attempt to explain the error mechanisms that
cause RowHammer bit flips through circuit-level simulations of
capacitative-coupling and charge-trapping mechanisms, without
testing real DRAM chips. These works, some of which we discuss
in §5.3 and §6.3, are orthogonal to our experimental study.

10 Conclusion
This work provides the first study that experimentally analyzes

the impact of DRAM chip temperature, aggressor row active time,
and victim DRAM cell’s physical location on RowHammer vulnera-
bility, through extensive characterization of real DRAM chips. We
rigorously characterize 248 DDR4 and 24 DDR3 modern DRAM
chips from four major DRAM manufacturers using a carefully de-
signedmethodology andmetrics, providing 16 key observations and
6 key takeaways.We highlight threemajor observations: 1) a DRAM
cell experiences RowHammer bit flips at a bounded temperature
range, 2) a DRAM row is more vulnerable to RowHammer when
the aggressor row stays active for longer, and 3) a small fraction of
DRAM rows are significantly more vulnerable to RowHammer than
the other rows within a DRAM module. We describe and analyze
how our insights can be used to improve both RowHammer attacks
and defenses. We hope that the novel experimental results and
insights of our study will inspire and aid future work to develop
effective and efficient solutions to the RowHammer problem.
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A Appendix
Table 4 shows the characteristics of the DDR4 and DDR3 DRAM modules we test and analyze.

Table 4: Characteristics of the tested DDR4 and DDR3 DRAMmodules.

Type Chip
Manufacturer

Chip
Identifier

Module
Vendor

Module
Identifier

Freq.
(MT/s)

Date
Code Density Die

Rev. Org. #Modules #Chips

DDR4

A: Micron MT40A2G4WE-083E:B Micron MTA18ASF2G72PZ-
2G3B1QG [94] 2400

1911
8Gb B x4

6 96
1843 2 32
1844 1 16

B: Samsung K4A4G085WF-BCTD [132] G.SKILL F4-2400C17S-8GNT [35] 2400 2021 Jan★ 4Gb F x8 4 32
C: SK Hynix DWCW (Partial Marking) † G.SKILL F4-2400C17S-8GNT [35] 2400 2042 4Gb B x8 5 40
D: Nanya D1028AN9CPGRK ‡ Kingston KVR24N17S8/8 [75] 2400 2046 8Gb C x8 4 32

DDR3
A: Micron MT41K512M8DA-107:P [22] Crucial CT51264BF160BJ.M8FP 1600 1703 4Gb P x8 1 8
B: Samsung K4B4G0846Q Samsung M471B5173QH0-YK0 [131] 1600 1416 4Gb Q x8 1 8
C: SK Hynix H5TC4G83BFR-PBA SK Hynix HMT451S6BFR8A-PB [139] 1600 1535 4Gb B x8 1 8

★We use the date marked on the modules due to the lack of date information on the chips.
† A part of the chip identifier is removed on these modules. We infer the DRAM chip manufacturer and die revision information based on the remaining part of the chip identifier.
‡We extract the DRAM chip manufacturer and die revision information from the serial presence detect (SPD) registers on the modules.
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