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Abstract—Concurrent programs are more complex and error
prone than their sequential peers, and are much harder to
debug as well. High level data races (HLDR) are one of the
concurrency bugs most difficult to debug. They are a class of
concurrency errors that are not commonly addressed by the
testing and debugging techniques and tools. HLDR result from
the misdefinition of the scope of an atomic block, which should
be unique but was wrongly split into two or more independent
atomic blocks. Interleavings involving these misdefined atomic
blocks may violate the program correctness invariants and
cause the concurrent program to fail. In this work we propose
a hardware module to detect, expose and tolerate HLDR in
concurrent programs, with applications in both the software
testing and debugging and the software deployment phases.
In the detecting mode, our proposal detects HLDR with few
false positives and without the overhead and intrusion of
other dynamic software approaches. In the exposing mode, it
“stimulates" the program to expose existing latent HLDR and
trigger hidden HLDRs. Finally, in the tolerating mode, it may
act as a software healing technique by inhibiting certain buggy
interleavings. The results shows a reasonable performance
overhead and few false positives in all modes.

Keywords-Concurrency, Testing, Debugging, Data races,
Bloom filters

I. INTRODUCTION

New multiprocessor architectures are forcing a shift in

the software technologies towards exploiting parallel pro-

gramming. This shift is challenging because now the pro-

grammer has to reason about many threads accessing data

concurrently in non-deterministic interleavings.

Frequently, debugging the most tricky concurrency-related

errors takes months (or even years) to be solved [1]. It is

therefore of the utmost importance to invest resources in

both simplifying the parallel programming models (making

them less prone to errors) and in new hardware and software

tools to facilitate the debugging task (thus reducing the

software development costs). Many software and hardware

tools have been proposed towards this last goal, covering a

wide range of concurrency errors, including the detection

of data races [2], atomicity violations [3][4], sequential

consistency violations [5], asymmetric data races [6], and

also tools to help coping with the non-determinism of

concurrent programs, such as deterministic replay tools [7]

and behavior analysis tools [8].

Among these concurrent errors, atomicity violations are

specially difficult to debug. They are not easy to define nor

to detect, as there is no way to know for certain which shared

data accesses should be performed atomically by a program,

as these accesses may be implicitly represented in the source

code and scattered by multiple methods or even program

modules. Therefore, some heuristics are used for guessing
which accesses should be done atomically. These heuristics

inevitably cause both false positives and false negatives.

False positives report an atomicity violation when actually

there is none, while false negatives fail to report an existing

violation.

One of the most common ways to characterize atom-

icity violations in hardware approaches is by focusing on

using trace analysis to identify unserializable interleavings

with low probability of occurrence (that are directly corre-

lated with atomicity violations). Several proposals used this

scheme for detecting single-variable atomicity violations,

which involves multiple accesses to a single shared variable,

and multivariable atomicity violations, which involves ac-

cessing a set of variables. Whereas the first works on atom-

icity violations cover only single-variable atomicity viola-

tions [9][10], subsequent works tackle the more challenging

problem of multivariable atomicity violations [11][4].

An alternative way to characterize atomicity violations,

which will be the focus of this work, are High Level Data

Races (HLDR), first defined by Artho et. al. [3]. Whereas

it is difficult to compare this approach with the definition

of atomicity violation as covered by the serializability, the

definition of HLDR is wide enough to cover both single-

variable and multivariable atomicity violations. A HLDR can

occur when two concurrent threads access a set V of shared

variables, which should always be accessed atomically, but

at least one of those threads does not access the variables

in V atomically. HLDR result from the misspecification of

the scope of an atomic block, by splitting it in two or more

atomic blocks that when interleaved with some other atomic

blocks violates the expected atomicity in the accesses to the

variables in V and may cause the concurrent program to

malfunction or even to fail.

Software approaches to tackle HLDR may use dy-

namic [3] or static [12] program analysis techniques. In this
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work we propose, to the best of our knowledge, the first

hardware approach for detecting, exposing and tolerating

High Level Data Races in concurrent programs, by way of

a unified approach covering both the development and the

deployment phases of the software life cycle.

Our hardware module strongly resorts to Bloom fil-

ters [13]. A Bloom filter represents a set by way of a statis-

tical component capable of storing and indefinite number of

elements in a bounded space at the cost of reporting false

positives but never false negatives, i.e., if the element is in

the set the Bloom filter will always report it as present,

while if the element is not in the set it will usually be

reported as absent but sometimes it may wrongly be reported

as present. We opted for using Bloom filters because they are

a common structure used in a lot of different applications,

and with a few changes in the control logic, the module

could be adapted for other uses as well. Examples of

other applications that use Bloom filters are transactional

memory (TM) [14][15][16][17][18][19], data race detection

and optimization [6][20].

We target a hardware implementation because software

solutions are very slow, and in practice, they are only usable

with small programs. The aim of a hardware solution is to

make a slow overhead approach that could be used in real

applications, and in real time, with negligible slowdown.

The downsize is that the hardware resources are limited,

and therefore the detection is not as precise as in software

implementations. Furthermore, a processor incorporating our

solution could reuse these Bloom filters for other purposes

in case our functionality is not needed.

The remainder of this paper is organized as follows. We

start by introducing background about HLDR in Section II,

we describe our proposed hardware module in Section III,

we evaluate our techniques in Section IV and we present

some concluding remarks in Section V.

II. BACKGROUND ON HIGH LEVEL DATA RACES

For detecting HLDR, we base our work in the concept

of view and view consistency defined by Artho [3]. A view
is the set of variables accessed inside an atomic block. In

the original proposal by Artho [3], a view included both

the locations read and written. Dias et al. [12] suggested

to differentiate between read and write views, which allows

to avoid false positives because of read-read conflicts. In

this work we use the original definition of a single view

for reads and writes, which simplifies the algorithm and

the hardware implementation, and because according to our

experiments there are no much false positives due to read-

read conflicts. However, an approach using separate views is

perfectly feasible at the cost of some additional complexity.

A view is maximal in a thread if it is not a subset of any

other view in the same thread. Intuitively, a maximal view

represents a set of variables that should always be accessed

atomically. Two threads are view consistent (and originate

atomic void getA() {
return pair.a;

}
atomic void getB() {
return pair.b;

}
atomic void setPair (int a, int b) {
pair.a=a;
pair.b=b;

}
boolean areEqual(){
int a = getA();
int b = getB();
return a==b;

}

Figure 1. Example of a high level data race.

no HLDR) if, for each maximal view of one thread, the sets

resulting from its intersection with the non-maximal views of

the other thread form an inclusion chain between themselves.

Figure 1 illustrates a static representation of a HLDR in a

piece of source code, where the variables pair.a and pair.b
are accessed atomically in the method setPair (they form

a view V1 = {pair.a, pair.b}), but are accessed in two

separated atomic blocks in the areEqual method, namely

in the atomic methods getA and getB (they form the views

V2 = {pair.a} and V3 = {pair.b} respectively). In this

example only V1 is a maximal view, because both V2 and

V3 are subsets of V1. This example is not view consistent,

because the intersection of V2 and V3 with the maximal view

V1 (in this example, V2 ∩ V1 = V2 and V3 ∩ V1 = V3) do

not form an inclusion chain i.e., V2 �⊆ V3 ∧ V3 �⊆ V2.

We propose an approach that explores the temporal prox-

imity and only manages atomicity violations that are close

in time. This means our approach uses a best-effort policy

and may cause false negatives, i.e., it may fail to flag some

HLDR that although possible are not probable. However, our

approach also enables simpler and better resource efficient

implementations (only the last views are maintained). In

its three operation modes, our approach is able to detect

HLDRs, expose HLDRs in some cases where the manifes-

tation of the bug is very rare, and tolerate HLDRs in buggy

programs at execution time.

III. DYNAMIC HANDLING OF HLDR

In this section we explain how our approach differs from

classical approach proposed by Artho [3]. Our proposal

is based on a dynamic and best-effort algorithm to detect

HLDR, that despite being designed for a hardware oriented

implementation, it can be also implemented as a low space

overhead software approach. Our approach builds on the

concepts defined in the Section II, but adapts them to

work with some imposed limits and restrictions, aiming

at achieving a good compromise between precision and
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Figure 2. Possible view interleavings in the dynamic execution of a buggy
program with a HLDR.

complexity and at allowing an efficient hardware design and

implementation.

At execution time, an actual HLDR may or may not

lead to an incorrect execution, depending on the threads’

interleaving and on whether the bug does or does not

manifests itself. Figures 2(a), 2(b) and 2(c) depict three

cases of the possible interleavings of a particular situation

of HLDR, where there is a thread with a maximal view

accessing variables A and B (V[AB]), and another thread

accessing A and B in two separate atomic blocks (V[A] and

V[B]). Although there is a potential HLDR, in the cases of

Figures 2(b) and 2(c) the bug does not manifest itself as

thread 1 does not break the atomicity between the variables

A and B in thread 2. In Figure 2(a) the required atomicity

between the accesses to A and B is broken.

We propose to consider a per thread bounded time-

window of past events and only detect HLDR that in-

volve views in this window. Hence, we define a thread
window as the set of the last N views collected in a

thread. We call {TW0, TW1, . . . , TWM−1} to all the thread

windows of the system, being M the maximum number of

threads supported (in case of our hardware implementation,

the maximum number of hardware threads). We define

{V 0
x , V

1
x , V

2
x , . . . , V

N−1
x } as the set of views contained in

the thread window x, being V 0
x the most recent view, and

V N−1
x the oldest view. The thread window may easily be

implemented in hardware as a set of Bloom filters (one per

view), and the views in each thread window are replaced in

FIFO order. Due to the bounded number of views maintained

in each thread window our approach may introduce new false

negatives. Nevertheless, this problem is of limited impact as

experiments show that most of the HLDR are caused by

views which are accessed close in time.

However, the use of Bloom filters to keep the views can

cause false negatives in the detection of HLDR. For example,

in Figure 2(a), if V[A] and V[B] are mapped to the same

value of the Bloom filter, the race would be not detected.

This situation should be rare if the Bloom filters are well

dimensioned; we do not detect any in our evaluation.

Besides the thread window, we also introduce the concept

of maximal window for optimizing the access to the maximal

views. If a view is maximal in a thread window it is also

replicated in the maximal window and extended with and
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Figure 3. Logic associated with each view in the module (common to the
views in the maximal window and in the regular windows).

additional field ownTh to identify the owner of that view.

Therefore, the maximal window keeps all the maximal views

from all the thread windows, and they are replaced in FIFO

order. This maximal window may be larger than the regular

thread windows for extending the visibility of HLDR and

increase the precision of the system. In the maximal window,

the views are represented as {MV0,MV1, ...MVL−1}, being
L the number of views that the maximal window can host.

The main objectives of the maximal window are:

• To simplify the logic and hardware implementation of

the approach: when detecting HLDR is only required

to check the intersections of regular views against the

maximal views in the maximal window, and not with

all the views in all the thread windows.

• To expand the scope of HLDR to the tolerating and

exposing modes: the maximal views that took part in a

detected HLDR are stored in the maximal window with

a higher priority; and views with high priority stay in

the maximal window for a longer time.

Because programs are naturally dynamic and our windows

have a limited scope, a view may be maximal at a certain

point of the execution and stop being maximal later on (or

the other way around). Our approach distinguishes between

two types of views in the maximal window:
• Maximal views (MV): when a view is maximal in a

thread window.

• HLDR views (HV): are the maximal views that were

previously involved in a HLDR.

These views have a pre-defined priority within the max-
imal window. The MVs have low priority, and HVs have

high priority. New views entering the maximal window can

only replace views with the same or lower priority. With this

scheme, we prioritize the maximal views which have more

probabilities of producing bugs.

The replacement algorithm in the maximal window is the

following:

• If there are views with lower priority, the oldest low

priority view is replaced.

• If there are no views of lower priority, the oldest view

of high priority is replaced.

The main implementation decision was to associate each

view of the regular window to a set of logical gates to
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perform the intersection with the new view, as well as

a comparator to check if the intersection relation with

the regular view (intersect, subset or superset). Figure 3

shows how this relations are calculated in the hardware

implementation. Signal 1xy indicates if the new view and

the regular view intersects (the signal is one) or not (zero),

signal 4xy indicates that the new view is a superset of the

regular view and signal 5xy indicates that the new view is

a subset of the regular view.

Our hardware design is placed in the processor bus, and

therefore it can snoop all the cache coherence messages.

When a lock is detected, the module starts to collect the view

(the memory accesses being accessed) until critical section

ends (unlock). This design resembles to PACMAM [6].

We propose three different modes of operation, described

herein, leveraging this basic structure of windows: the de-

tecting mode, the exposing mode and the tolerating mode.

A. Detecting Mode

The detecting mode dynamically detects HLDR at run-

time, in cases of both buggy (Figure 2(a)) and non buggy

(Figures 2(b) and 2(c)) interleavings. The detection algo-

rithm is an adaptation of the algorithm proposed by Artho [3]

and is triggered each time a new view NVx is added

to a particular thread window TWx of thread x: if the

intersection of the new view NVx with a maximal view

MVy (y �= x) is not empty and does not form an inclusion

chain with all the other non-empty intersections of views

in TWx with the same MVy , them a HLDR is detected

and flagged. After the HLDR detection, the NVx is inserted

in the corresponding V 0
x of the window for the x thread,

replacing the oldest view (FIFO order). Furthermore, NVx is

maximal in TWx, it is also inserted in the maximal window

MVx.

For reducing the amount of computations, we save the

results of some computations in per view metadata in the

thread windows:

• pAv: indicates if the view is a subset of any maximal

view of other threads, and the relative ordering with

respect the implied maximal view.

• ptMax: pointer to the position of the maximal view in

the maximal window which is a superset of the view.

The possible values of pAv are NONE, POTENTIAL and

REAL. The NONE value indicates that the view is not a

subset of any maximal view of the other threads. If pAv is

set to POTENTIAL, it indicates that the view arrived after the

implied maximal view, and may cause a potential HLDR (as

in the case illustrated in Figure 2(c), when processing V[A],

its bit pAv is set to POTENTIAL). If pAv is set to REAL, it
indicates that the view arrived before the implied maximal

view, and may cause a real HLDR (as in the example of

Figure 2(a), when processing V[AB], the bit pAv of the V[A]

is set to REAL).
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Figure 4. Logic in a regular window for inserting a new view.

Each new view updates its pAv and ptMax metadata,

which will be used in the future to avoid redoing the subset

calculations.

Figure 4 shows the basic logic for inserting the new view

in its corresponding regular window, as well as the values

of the ptMax and pAV in the new view and in other views

that interact with the new view. The signal 5xy indicates

that the view could be involved in a HLDR with a buggy

interleaving. The signal 18 is generated in the checking

process, and indicates that the view could be implied in a

HLDR with a non-buggy interleaving.

Additionally, we also need two new fields in the maximal
views of the maximal window:

• thIDs: indicates the owner thread(s) of the maximal

view.

• MType: indicates the type of the maximal view (MV or

HV), as described before.

If a new view is detected as a maximal view of a thread (if

it is not a subset of any other view in the thread window), it

is inserted in the maximal window (with MType = MV ). A

maximal view sets MType = HV when a HLDR involving

this maximal view is detected.

A HLDR is detected when one of the following two cases

occur:

1) When a view from the same thread window than the

new view has its pAv set to REAL or POTENTIAL
and the intersection of this view with the maximal

view pointed by its ptMax does not form an inclu-

sion chain with the intersection of the new view with

the same maximal view. The case of pAv =REAL
corresponds to a buggy interleaving, and the case of

pAv =POTENTIAL corresponds to a non-buggy inter-

leaving (as depicted in Figures 2(b) and 2(c) respec-

tively).

2) When the new view is a maximal view, and there is

a thread window (from a different thread) with two

views that are a subset of the new maximal view and

whose intersections with the maximal view do not form

an inclusion chain between them (as in example of
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Figure 5. Example of the exposing mode.

Figure 2(a)).

When our approach detects a conflict, it launches an

exception that will be handled by software. At this moment,

the content of the Bloom filters are software accessible to

facilitate the analysis of the HLDR. However, the actions

taken by this software handler, including the analysis of the

HLDR and possible notifications to the software developer,

are outside the scope of this paper.

B. Exposing Mode

Frequently, concurrent bugs only manifest very rarely

under particular interleavings. The exposing mode tries to

force buggy interleavings in programs with HLDR.

To support this mode, we add a new exposing field to

each view of the maximal window, that indicates if that

maximal view was previously involved in a HLDR.

The exposing mode requires the detection of HLDR

according to the description in Section III-A. When a HLDR

is detected the exposing field of the maximal view involved

in the HLDR is set to true, which gives this maximal

view priority over the other views in the maximal window

(this priority will be taken into consideration by the view

replacement algorithm). For each subsequent view of any

other thread, if it is a subset of an existing “exposable”

maximal view, then the corresponding thread is stalled.

Stalling the thread aims at enforcing a buggy interleaving. To

avoid deadlocks the thread resumes after a well established

period of time, or after a predetermined number of views

are inserted into the system. This mode may cause some

slowdown in the system because it introduces artificial

delays by stalling threads, but performance shall not be a

critical issue since this is a debugging mode.

Figure 5 shows an example where, after detecting a HLDR

with a non buggy interleaving: thread 1 executes V[AB], and

them thread 0 accesses A and B in two separate atomics

blocks; when thread 0 executes V[A] the second time (note

that V[A] is a subset of the “exposable" maximal view

V[AB]) the thread stalls for a while to increase the prob-

ability of a buggy interleaving (that occurs in the example

after the execution of V[AB] and V[B] at threads 1 and 0

respectively).

To avoid deadlocks due to stalls, we also need two extra

fields per window. A waiting bit indicating if the thread is

stalled, and the waiting_num_inserts field indicating the

number of views inserted since the thread is stalled (when

the limit is reached the stalled thread is resumed).
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Figure 6. Example of the tolerating mode.

C. Tolerating Mode

Our key insight for this mode is to leverage on hard-

ware transactional memory [21] (HTM) to build a HLDR

tolerating mechanism. HTM is already supported in some

new multicore processors [22], [23] and it is expectable that

others will adopt this technology as well.

The tolerating mode also follows the approach described

in Section III-A for detecting HLDR, but we propose to

enclose the atomic regions that are suspicious of causing

HLDR in a hardware memory transaction generated auto-

matically and transparently by our hardware module. This

mode however only works for non-critical HLDRs, and the

system can only avoid repetitions of an “observed” HLDR.

To support the tolerating mode, four additional fields

must be added to our system (two are presented now, the

other two later in this section). The first addition is a new

tolerating field in each view of the maximal window. This

field indicates if the maximal view has previously been

involved in a HLDR (as execution modes are mutually

exclusive, we may reuse the exposing field of the exposing

mode as the tolerating field of this mode). The second

addition comes from the necessity of mapping the views

to the limits of the critical sections, that in our case are

defined by the lock and unlock primitives. We identify each

critical section by the lock variable. To ensure that a single

transaction provides atomicity for a set of adjoining lock-

based critical sections, the transaction must start before the

beginning of the first critical section. Therefore, whenever

the system detects an interleaving that may lead to a HLDR,

the lock variable addresses of the two non-maximal views

involved in the HLDR are stored in a per-thread list of locks.

New occurrences of critical sections which lock variable is

in this list, should trigger a new transaction.

Before acquiring any lock that is in its list of locks, a

thread starts a transaction that protects subsequents atomic

sections. A transaction will commit:

i) After the first unlock, if the view is not a subset of any

maximal view with the tolerating field set, in which

case the transaction was useless;

ii) After detecting a HLDR with non-buggy-interleaving;

iii) Once the limit (maximum number) of views to be

protected is reached; or

iv) Once the limits of the underlying HTM system are

reached (e.g., the maximum size of the data set being

protected).

Figure 6 shows an example of the tolerating mode. After
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atomic void insert(num,x){
if(ss[num] == NULL){
ss[num] = x;
num_elements++;

}
}
atomic void delete(num,x){
if(ss[num]==x){

ss[num]=NULL;
num_elements--;

}
}
// global vars: num_elements; ss[];
// Initial values: ss=[r,NULL]
void thread1_exec(){

delete(0,b); // executed at time 1
insert(1,d); // executed at time 3

}
void thread2_exec(){

insert(1,c); // executed at time 2
}

Figure 7. Example of low level false positive in fmm.

detecting a HLDR with non-buggy interleaving (AB-A-B),

all the subsequent atomic regions that can possibly cause a

HLDR are enclosed in transactions, and in case of conflict,

the transaction is aborted and restarted.

Finally, to support this mode each thread window in the

system requires a inTx field that indicates if the thread is in

a transaction or not, and a Tx#inserts field that indicates

the number of views that were inserted since the transaction

started (remember that the transaction also commits when

the number of atomic blocks executed in the transaction

reaches a predefined limit).

Furthermore, each view also needs a spec_view field that

indicates if the view was generated inside a transaction,

and therefore it is a speculative view. When a transaction

commits, this field is set to zero in all the views of the

window. In case of abort, the speculative views are discarded

(i.e, the corresponding Bloom filters are cleared).

D. Hardware Issues: Low Level False Positives

Implementing this technique in hardware has some draw-

backs; HLDR are defined as a high abstraction level, and

all the explanations in Section II are based in variable

names. However, our hardware proposal does not have such

a high level visibility, and it is only able to construct the

views based on the memory addresses being accessed by

the processor in the load and write instructions. This can

cause extra false positives in the system, which we call low

level false positives.

Figure 7 shows a simplified example of a low level false

positive detected in the fmm benchmark. There are two

atomic functions, one to delete the content of a list, and

another to insert content in the list. The views generated by

Table I
BASELINE MODULE CONFIGURATION.

#threads 8
#Views per thread’s window 5

Bloom Filters 256 bits
Type of views Single view for RD/WR

#Views Maximal Window 15

the first thread (thread1_exec()), considering variable names,

are V1 = {ss, num_elements} (at time 1) and V2 = {ss}
(at time 3), and the (maximal) view generated by the sec-

ond thread (thread2_exec()) is V3 = {ss, num_elements}
(at time 2). These two threads are view consistent (no

HLDR) according with their views: V1 ∩ V3 = IV13 =
{ss, num_elements} , V2 ∩ V3 = IV23 = {ss}, and IV13

and IV23 do not form an inclusion chain.

However, at a hardware level the views are formed

by addresses, which imply that the views are V1 =
{ss[0], num_elements}, V2 = {ss[1]} and V3 =
{ss[1], num_elements}, and the two threads are not view

consistent: V1∩V3 = IV13 = {num_elements} , V2∩V3 =
IV23 = {ss[1]}, and IV13 and IV23 form an inclusion chain

(IV13 �⊆ IV23∧IV23 �⊆ IV13), which cause a low level false

positive.

There are several ways of minimizing this problem, as

for example use data coloring [4] to identify at hardware

level which data corresponds to the same variable. However,

as we show in Section IV, the number of low level false

positives is contented, and does not justify the extra cost of

new mechanism to avoid them.

IV. EVALUATION

In this section we evaluate our approach using a central-

ized hardware module to keep the thread windows and the

maximal window. We configure the module with different

parameters to compare their influence in the detected HLDR

and we analyze the false positives reported. Furthermore, we

experiment with the module in the exposing and tolerating

modes, measuring the number of stalls introduced by the

system in exposing mode, and obtaining statistics about the

introduced HTM transactions in the tolerating mode.

A. Experimental Setup

We modeled our centralized hardware module system in

a customized simulator build on top of the PIN instrumen-

tation tool [24]. We simulated the mechanisms for detecting

HLDR, and experimented with several configurations. We

also used PIN to implement the hardware transactional

memory support required for the tolerating mode, and the

mechanism for stalling threads in the exposing mode.

In our experiments we used 8 threads, the HDLR module

kept 5 views per thread implemented with 256 bit Bloom

filters, the read and write sets were maintained in a single

164

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 29,2021 at 19:51:56 UTC from IEEE Xplore.  Restrictions apply. 



synchronized(table) {
table[N].value=V;

}
synchronized(table) {
table[N].achieved=true;

}
synchronized(table) {
if (table[N].achieved &&
system_state[N]!=table[N].value){
issueWarning();

}
}

Figure 8. NASA HLDR.

Table II
ATOMIC BLOCK CHARACTERIZATION AND HLDR DETECTED IN

DETECTING MODE.

Characterization HLDRs

Id. Benchmark #AB #RS #WS #RR #LL #RH

1 radix 341 8.2 3.1 1 0 0
2 fft 113 9.0 3.6 1 0 0
3 cholesky 22092 23.8 6.3 0 1 0
4 lu_cb 1013 9.2 3.7 1 0 0
5 lu_ncb 293 9.2 3.7 1 0 0
6 barnes 3549 104.3 40.0 1 1 0
7 fmm 1338 168.4 32.0 0 1 0
8 ocean_cp 15164 8.8 3.3 0 1 0
9 radiosity 108464 154.5 61.4 0 3 0

10 water_ns 41687 119.7 16.0 0 1 0
11 water_sp 453 7.8 2.9 0 1 0
12 fluidanimate 76643 6.8 1.1 1 0 0
13 streamcluster 178719 2.7 0.6 1 0 0
14 bodytrack 2998 6.1 3.2 1 0 0
15 nasa 1500 8.5 3.1 0 0 1

view, and we kept an unique maximal window composed

by 15 views. Table I summarizes this baseline configuration.

We experimented with several well-tested lock-based

benchmarks from the Parsec suite [25] and the SPLASH2

benchmarks [26], as well as with a suite of atomicity

violations taken from previous works in HLDR [3][12]. The

purpose of evaluating well-tested benchmarks is to measure

the false HLDR reporting and the overhead introduced in

different modes. The correctness of the module has been

tested with simple kernel examples that simulate all the

possible situations that generate HLDR.

As a realistic example of HLDR we took the problem

that was detected in NASA’s Remote Agent space craft

controller [27], in which the error was very difficult to

find, and it rarely manifests (only under certain thread

interleavings). Figure 8 shows a simplified version of this

HLDR.

Table II shows some characteristics of the benchmarks

used to evaluate our system: the number of atomic blocks

(#AB), the average number of read accesses per atomic

Table III
CAUSES FOR INTERRUPTING THE STALLS IN THE EXPOSING MODE.

Benchmark timeout #inserts interleaving Total

radix 51 12 0 63
fft 0 0 0 0
cholesky 8132 0 0 8132
lu_cb 0 0 0 0
lu_ncb 0 0 0 0
barnes 1370 680 0 2050
fmm 687 0 0 687
ocean_cp 1502 0 0 1502
radiosity 58649 0 0 58649
water_ns 0 0 0 0
water_sp 11 0 0 11
fluidanimate 58 3 113 174
streamcluster 0 0 0 0
bodytrack 10 0 0 10
nasa 6 5 1182 1193

block, or read set (#RS), and the the average number of

write accesses per atomic block, or write set (#WS).

B. Detecting Mode Evaluation

For evaluating the detecting mode, we measured the

number of HLDR detected and we analyzed their causes.

Table II shows the HLDRs detected classified in three

categories; the #RR column shows the number of false

positives detected due to read-read conflicts, the #LL column

shows the number of low level false positives, and the #RH

column shows the number of real HLDRs. The read-read

conflicts could be avoided by duplicating the bloom filters

and increasing the complexity by differentiating read and

write views, and the low level false positives could also be

avoided with extra complexity (discussed in Section III-D).

However, we advocate for maintaining the module simple at

the cost of this (few) false positives.

We also evaluated the impact of the window and Bloom

filters sizes in the number of reported false positives. From

our experiments we concluded that much larger windows

increase the number of false positives, while sizes in the

order of 256 exhibit a low false positive rate in the Bloom

filters and also limit the number of false HLDR.

C. Exposing Mode Evaluation

In the exposing mode, the system introduces small delays

by temporarily stalling the threads accessing views that were

previously involved in a non-buggy HLDR interleaving (as

described in Section III-A), with the aim of stimulating the

buggy interleavings. There are three ways of resuming a

stalled thread: after a default timeout (in the order of several

hundreds of dynamic instructions), after a default number of

inserts in the module (three in this experimental setup), or

after a detection of a buggy interleaving.

Table III shows the number of total stalls in each bench-

mark. For each benchmark listed in this table, the stalls
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Table IV
TRANSACTION CHARACTERISTICS IN THE TOLERATING MODE.

Benchmark #Tx #AB/abort #AB/comm.

radix 20 0.95 0.00
fft 4 0.71 0.00
cholesky 804 1.43 2.98
lu_cb 44 1.00 0.00
lu_ncb 16 1.00 0.00
barnes 28 1.31 0.00
fmm 28 1.13 3.00
ocean_cp 48 1.08 0.00
radiosity 24119 0.71 3.00
water_ns 0 0.00 0.00
water_sp 49 1.23 2.78
fluidanimate 31522 1.04 3.00
streamcluster 0 0.00 0.00
bodytrack 0 0.00 0.00
nasa 72 1.14 3.00

reported were all triggered by a single HLDR, which oc-

curred many times during the program lifetime. In the case

of the NASA benchmark it was a real HLDR, in all the other

benchmarks the stalls were caused by the false positives (see

Table II). The column timeout indicates the number of times

that the thread was resumed because the thread reached the

stall time limit. The #inserts column indicates the number

of times that the thread was resumed because it reached

the maximum number of executed atomic blocks (in the

whole system) since the thread was stalled. The interleaving
column shows the number of times that the thread was

resumed because the module forced a buggy interleaving.

Despite the number of stalls may appear very big in

some cases, they are all produced by the same HLDR (see

Table II). In the case of the NASA benchmark, most of

the HLDR bugs are exposed correctly. We could avoid

the unnecessary stalls by introducing a list of know false

positives that should be ignored in future executions.

D. Tolerating Mode Evaluation

For evaluating the tolerating mode, we analyze the trans-

actions started by the module for protecting atomic blocks.

Transactions commit when they reach a predefined num-

ber of inserts without conflicts. In the configuration of

this evaluation, the module protects three atomic blocks

before commit. If there is a data conflict with any other

data access in the system (transactional or not transactional

data), the transaction aborts and restarts. To avoid deadlocks

and livelocks, we establish a limit of three restarts per

transaction. When this limit is reached, the transactional

boundaries are eliminated and the code is executed without

protection.

Table IV shows the main characteristics of the transac-

tions. #Tx are the number of transactions in the benchmark,

#AB/abort are the number of protected atomic blocks per

aborted transaction, and #AB/commit is the average number

of protected atomic blocks per committed transaction (it

could never exceed 3 in our testing configuration). A value

of 3 in the #AB/commit column indicates that all the commits

happened because they reached the maximum number of

views, and not because they found an HLDR. A value

of 0 indicates that no transactions committed (because there

were no transactions or because all transactions reach the

maximum number of restarts).

The performance overhead of this mode is given by the

number of transactions, the size of the (read and write sets

of the) transactions, and the number of aborts. The number

of transactions is low in general (excepting radiosity and

fluidanimate), the size of the read and write sets is also

moderate (with the exception of cholesky and water_sp),
and the number of aborts is also small in general. Taking

into consideration that hardware support for transactional

memory is already mainstream for some processors of the

main manufacturers, the execution overhead caused by the

transactions introduced by the module is expected to be

reasonable.

V. CONCLUSIONS

In this paper we propose a dynamic best-effort method for

detecting, exposing and tolerating High Level Data Races

with low overhead and low hardware support. The proposed

method is oriented towards an hardware implementation and

thus use resources scarcely. The detecting and exposing

modes help the programmer to identify and check HLDR,

while the tolerating mode is useful in production runs to

(temporarily) heal buggy software distributions and tolerate

some HLDR in faulty codes. The results show that the

implemented module can detect the HLDR with few false

positives and can expose them with a reasonable perfor-

mance slowdown. Furthermore, the proposed module can

also tolerate HLDR with the support of a (hardware) trans-

actional memory system with also a reasonable performance

overhead.
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