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Value prediction improves instruction level parallelism in superscalar processors by breaking true data depen-

dencies. Although this technique can significantly improve overall performance, most of the state-of-the-art

value prediction approaches require high hardware cost, which is the main obstacle for its wide adoption

in current processors. To tackle this issue, we revisit load value prediction as an efficient alternative to the

classical approaches that predict all instructions. By speculating only on loads, the pressure over shared re-

sources (e.g., the Physical Register File) and the predictor size can be substantially reduced (e.g., more than

90% reduction compared to recent works). We observe that existing value predictors cannot achieve very high

performance when speculating only on load instructions. To solve this problem, we propose a new, accurate

and low-cost mechanism for predicting the values of load instructions: the Address-first Value-next Predictor

with Value Prefetching (AVPP). The key idea of our predictor is to predict the load address first (which, we

find, is much more predictable than the value) and to use a small non-speculative Value Table (VT)—indexed

by the predicted address—to predict the value next. To increase the coverage of AVPP, we aim to increase

the hit rate of the VT by predicting also the load address of a future instance of the same load instruction

and prefetching its value in the VT. We show that AVPP is relatively easy to implement, requiring only 2.5%

of the area of a 32KB L1 data cache. We compare our mechanism with five state-of-the-art value prediction

techniques, evaluated within the context of load value prediction, in a relatively narrow out-of-order proces-

sor. On average, our AVPP predictor achieves 11.2% speedup and 3.7% of energy savings over the baseline

processor, outperforming all the state-of-the-art predictors in 16 of the 23 benchmarks we evaluate. We eval-

uate AVPP implemented together with different prefetching techniques, showing additive performance gains

(20% average speedup). In addition, we propose a new taxonomy to classify different value predictor policies

regarding predictor update, predictor availability, and in-flight pending updates. We evaluate these policies

in detail.
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1 INTRODUCTION

Improving single thread performance is critical to accelerate modern applications. In many cases,

these applications are difficult to parallelize and scale with a large number of threads [8, 24, 36].

Also, many parallel applications spend a large amount of time in serialized code portions [3, 29,

60], which limits their overall performance.

Value prediction is a technique that aims to improve single thread performance in out-of-order

processors by increasing Instruction Level Parallelism (ILP). The key idea is to break true data

dependencies by predicting the output value of an instruction and execute dependent instructions

speculatively. The technique was simultaneously proposed by Lipasti et al. [34, 35] and Mendelson

and Gabbay [37]. Many subsequent works proposed new value prediction techniques [9, 20, 22,

44, 52, 55, 62, 63, 66].

More recently, Perais and Seznec revisited the topic [16, 46–49] with the main goal of reducing

complexity, which is a major reason as to why value prediction is still not implemented in current

processors. They simplified value prediction with four different proposals.

First, in Reference [48], the authors propose a confidence estimation mechanism that improves

value prediction accuracy. This allows the use of a much simpler mechanism to recover from value

mispredictions (pipeline squashing). This work also proposes the VTAGE predictor, which outper-

forms all prior state-of-the-art predictors.

Second, EOLE [47] tackles the problem of extra ports required in the Physical Register File

(PRF) for value prediction. EOLE modifies the architecture to enable the execution of single-cycle

instructions in both the in-order front-end and the in-order back-end. The operands of such single-

cycle instructions are not read from the PRF. EOLE reduces the complexity of the out-of-order

engine but increases the complexity of the in-order front-end and back-end (by adding extra ALUs

and logic). As a result, EOLE allows a narrower out-of-order instruction window without causing

performance loss.

Third, BeBoP [49] tackles the problem of high number of ports required by the value predictor

to provide several predictions and updates per cycle. BeBoP uses a single entry to place all the

predictions associated with a single cache block, instead of using a single entry per instruction.

This work also proposes Differential VTAGE, which provides better performance and lower cost

than VTAGE, but it requires additional hardware to predict tight loops correctly.

Fourth, in Reference [46], the authors propose a technique that reuses registers with values

that are predicted to be the same as the output of the current instruction. They use Instruction

Distance (IDist) to identify which physical registers contain values that can be used as predictions.

They propose an Inflight Shared Registers Buffer (RSET) for tracking reuse opportunities. RSET

provides 5% average speedup with realistic 10.1KB structures, lower than previous value prediction

schemes [47, 48].

Even though these previous works have proposed excellent alternatives to reduce complexity,

the cost of value prediction is, unfortunately, still a concern, especially in energy-constrained

processors. In Reference [48] and EOLE [47], the predictors are large (8,192 entries), and they

have several ports to satisfy the demand (up to eight predictions per cycle in an eight-issue core).

BeBop [49] proposes a solution to the multi-port problem, but it still requires predictors with
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many (2,048) entries (one entry per fetch block). Finally, in Reference [46], Perais and Seznec

reduce the predictor structure size, but this comes at the cost of lower performance.

Our goal in this article is to reduce value prediction complexity while preserving its performance

benefits. Our contributions are based on three observations: First, predicting only load values pro-

vides speedup very close to that of predicting all instruction’s values. Second, load instructions

comprise only 25% of all instructions, which allow us to (1) use small predictors with fewer ports

and (2) reduce the back pressure over the PRF. Third, load addresses are more predictable than

load values. Based on these observations, we design a new load value predictor, the Address-first

Value-next Predictor with Value Prefetching (AVPP).

The key idea of our AVPP is to leverage the better predictability of a load instruction’s effective

address to more accurately estimate the value of a load instruction. The AVPP predictor is divided

into two consecutive parts; the first part is a classical predictor indexed by the Program Counter

(PC), which returns the predicted address for the current instance of a given load instruction.

The second part of the predictor is a non-speculative Value Table (VT) indexed by the predicted

address, which returns the value predicted for the load instruction. To increase the coverage of

AVPP, we increase the hit rate in the VT by using an adaptive algorithm to prefetch future predicted

addresses on time in the VT. Our AVPP predictor outperforms five state-of-the-art predictors [15,

22, 34, 48, 49], which we evaluate in the context of load value prediction on a relatively narrow out-

of-order processor. AVPP reduces the overall hardware overhead dedicated to value prediction, as

we leverage, as much as possible, existing structures for the implementation (i.e., the load queue).

We make the following three key contributions:

(1) We introduce a new load value predictor that exploits predictability of load addresses

to provide accurate load value prediction, the AVPP predictor (Section 4). This predictor

outperforms five state-of-the-art predictors and it significantly improves the performance

of several benchmarks that do not benefit from any of the other predictors. The size of our

AVPP predictor is only 2.5% that of a 32KB L1 data cache size; it has only 1 read port, 1 write

port and 512 entries. AVPP provides an average speedup of 11.2% (up to 53%) and average

energy savings of 3.7% (up to 15%), outperforming all the state-of-the-art predictors in

16 of 23 benchmarks. We also show that our predictor is complementary to conventional

prefetchers.

(2) We propose a new taxonomy for value prediction policies (Section 5) based on different

design choices that can be made to implement value prediction. Although most of the

policies were already used by previous works, they were not formally classified, compared

or evaluated. We divide the policies into three categories: predictor updates, predictor

availability and in-flight pending updates.

(3) We propose specialized microarchitecture optimizations for load value prediction (Sec-

tion 6) that simplify the required pipeline changes and make load value prediction easier

to implement.

2 MOTIVATION

The potential gain of value prediction depends on two factors. First, the data dependency pat-

terns between the instructions being executed. The more dependencies between instructions, the

better the potential for speculation. Second, the number of in-flight instructions that can be main-

tained simultaneously in the instruction window (i.e., the aggressiveness of the processor). The

bigger the instruction window, the more the opportunities for value prediction to issue speculative

instructions.
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Fig. 1. Speedup when speculating with perfect value prediction on only L1 hit loads (L1HITS); only L1 miss

loads (L1MISS); all LOADS; and ALL instructions.

In this work, we focus on narrow, energy-constrained microarchitectures. Many processors have

relatively small instruction windows (128 entries) due to power considerations, as is the case with

the ARM Cortex-A72 [4] or the Intel Westmere microarchitecture [19]. In this section, we show

the potential of value prediction in a four-issue processor (configuration details in Section 7) by

evaluating an oracle value predictor that always provides correct value predictions. All the cor-

rectly predicted values are consumed by the dependent instructions, thereby breaking the true

data dependencies. We run four experiments where an oracle predictor predicts the following four

categories of instructions: (1) only loads that hit in L1 cache (L1HITS), (2) only loads that miss in

L1 (L1MISS), (3) all load instructions (LOADS) and (4) all instructions (ALL).

Figure 1 shows the speedup resulting from these experiments on the benchmarks tested in our

evaluation. We make two key observations. First, in most cases, correctly speculating only on load

instructions provides almost the same potential speedup (28% on average) as speculating on all the

instructions (32% on average), which provides the theoretical maximum speedup for a particular

architecture. Second, speculating on L1 hit loads provides more performance than speculating on

L1 miss loads on 16 of 23 benchmarks. The reason is that, even though L1 hits provide lower

gain per instruction, they are also much more frequent than L1 misses, which results in a better

overall speedup. We will show in our evaluation (Section 7) that, in practice, most of the correct

predictions are L1 hits.

Although load instructions are the primary cause of pipeline stalls [1, 41, 43], they represent, on

average, only 25% of all dynamic instructions in our experiments, which implies that the perfor-

mance gain per speculated load instruction is more significant than with non-load instructions.

In the benchmarks used in our evaluation, the average performance gain resulting from spec-

ulating on (1) all instructions is 0.19 cycles per instruction, (2) only the non-load instructions is

0.07 cycles per instruction and (3) only the load instructions is 0.6 cycles per instruction. Thus, the

per-instruction benefit of speculating on load instructions is ≈10× higher than that of speculating

on non-load instructions. Based on these observations, we argue that predicting the values of only

load instructions is likely a more efficient way of implementing value prediction (i.e., the way that

likely provides the best performance/cost ratio).

Another alternative to maximize prediction efficiency is to use mechanisms to find the most

critical instructions for speculation. Calder et al. [11] propose to speculate only on important

instructions that are expected to be on the critical path. Similarly, Tune et al. [64] dynamically

identify instructions likely to be on the critical path. However, determining the critical path in a

program is a difficult problem [18, 29, 30], which requires additional complexity and sophisticated

hardware structures.

The current research trend in value prediction is to (1) predict all instructions to achieve very

high performance and 2) try to reduce the hardware cost as much as possible [46–49]. We argue
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that such approaches are limited by the very large number of instructions these approaches have

to predict.

In this work, we revisit the idea of load value prediction, i.e., predicting the values of only load

instructions. The first value predictors were also focused on predicting the values of only load

instructions [35], but they did not focus on reducing the hardware cost and complexity. We propose

an efficient and low-cost load value prediction scheme that uses fewer resources than the best state-

of-the-art approaches, without sacrificing performance. We achieve our goals by (1) leveraging

existing structures in conventional out-of-order processors and (2) using a new load value predictor

that outperforms all the state-of-the-art value predictors, achieving speedups close to the oracle

in L1HITS (11.2% vs. 12.3%).

3 STATE-OF-THE-ART VALUE PREDICTORS

In this section, we describe the most important state-of-the-art value predictors, five of which are

later used in our evaluations (Section 7).

The Last Value Predictor LVP [34, 35] predicts that the next value will be the same as the last

one. The predictor latency can be one cycle for such a simple predictor (because it is implemented

as a single direct-mapped array).

The Stride predictor [37] is able to detect stride patterns between consecutive values. It predicts

that the next value will be the sum of the last value plus the calculated stride. When the predictor is

updated, the stride is calculated by subtracting the last value from the new value, and the last value

is updated with the new value. It is implemented as a tagged cache that contains the last value and

the stride. The predictor latency can be two cycles (one cycle for reading the table, another cycle

for calculating the predicted value).

The 2-Delta Stride (2D-Stride) predictor [15] is an optimization of the Stride predictor that

is designed to minimize the number of mispredictions in regular stride patterns that eventu-

ally have breaks in their sequence. For example, in a loop processing an array, when the array

reaches its end and starts again to iterate in the same or in another array, the 2D-Stride predictor

mispredicts only once. The 2D-Stride predictor latency is the same as the Stride predictor (two

cycles).

The Finite Context Method (FCM) predictor [54] is a context-based predictor. It is implemented

with two tables: The Value History Table (VHT) is indexed by the PC and it keeps the history

of the last values accessed by the instruction. The Value Prediction Table (VPT) keeps the actual

prediction and is indexed by the hashed history from the VHT. The predictor latency is two cycles,

one cycle to read the VHT and another cycle to read the VPT. The predictor update requires one

additional cycle to compute the hash.

The Differential FCM (DFCM) predictor [22] stores strides instead of values in the VHT. This

technique improves the FCM predictor’s accuracy significantly. The predictor latency is one more

cycle than FCM to sum the value and the stride (three cycles in total).

The VTAGE predictor [48] calculates its predictions based on the control flow history. VTAGE

is an adaptation of the ITTAGE indirect branch predictor [57], which exploits correlations on the

global branch history. VTAGE predictor performs well when the instruction values depend on the

control flow. VTAGE uses several tables, each one composed of the value, a confidence counter, a

tag and a bit used for the replacement policy. Each table is indexed by an increasing number of bits

from the global branch history, hashed with the PC. There is also a base predictor that is accessed

only by the PC, and it is implemented as a tagless last-value predictor (with a confidence counter).

The VTAGE predictor latency is two cycles (one cycle to hash the PC and the global history, and

one cycle to read the tables).
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Finally, similarly to the DFCM predictor, the Differential VTAGE (DVTAGE) predictor [49] is

an improvement over the VTAGE predictor that stores strides instead of full values. The predictor

latency is one more cycle than VTAGE to perform the stride addition (three cycles in total).

4 THE AVPP PREDICTOR: ADDRESS-FIRST VALUE-NEXT PREDICTOR

WITH VALUE PREFETCHING

The load address patterns of many applications are more predictable than their value access pat-

terns [23]. This is common, for example, in a loop that accesses an array of values: the addresses

follow a regular pattern (stride), whereas the values themselves could be completely random.

To leverage this observation, we create a new load value predictor that relies on address pre-

diction. Our AVPP predictor (Address-first Value-next Predictor with Value Prefetching) achieves

high coverage and accuracy, which leads to better performance than the best state-of-the-art value

predictors (as we show in Section 7).

The key idea of AVPP is to predict the address first, and use it to index a small non-speculative

table to obtain the predicted value next. AVPP is composed of two main parts. First, the value

prediction part (called AVPP prediction), which predicts the output value of a load instruction and

allows dependent instructions to execute speculatively (Section 4.1). Second, the value prefetching

part (called value prefetching), which allows improving the coverage of the value prediction part

(i.e., the first part) by increasing the predictor hit rate (Section 4.2). As a positive side effect, value

prefetching brings data to L1, which could also be beneficial for reducing the load access latency

of a regular request (as in conventional prefetching techniques). However, as we show in our

evaluation (Section 7.3), this prefetching effect has much less influence on the overall performance

improvement provided by AVPP. Most of the performance benefits come from the ability of AVPP

to accurately predict load values in a timely manner.

4.1 AVPP Prediction

To facilitate the description of our mechanism, we define the four types of addresses involved in

a load instruction: (1) the instruction address is the PC of the load instruction, (2) the load address

is the address accessed by the load instruction, (3) the predicted address is the address that AVPP

predicts to be accessed by the current instance of the load instruction (or the load address predic-

tion), (4) the prefetch address is an address that AVPP predicts will be accessed by a future instance

of the load instruction.

Figure 2(a) shows the high-level description of the two tables that compose the AVPP predictor.

The Address Table (AT) is indexed by the instruction address ❶, and it returns the predicted address

❷. The Value Table (VT) is indexed by the predicted address, and it returns the corresponding

predicted value ❹, which has to be prefetched in advance ❸. Figure 2(b) shows when the key

actions of the predictor happen in the pipeline. Figure 2(c) shows the AT and VT entry format.

AT can be implemented with any of the state-of-the-art predictors (with some restrictions, as

we will see in Section 4.2), and VT is a tagged direct mapped array (in our implementation).

A confidence counter (conf) is maintained in each AT entry to improve the accuracy of the

predictor.

Although VT is a small cache, we do not leverage the L1 cache for the same purpose. The main

reason is that prediction and load access are performed in different places in the pipeline. The

prediction has to be performed in the front-end, whereas the load access is performed later in the

Out of Order (OoO) execution engine. Even assuming that we can overcome this issue, we would

have two other issues if we leverage the L1 cache to store the VT values. First, the L1 cache is

designed with a number of ports appropriate to support the processor read and write requests. The

value predictor would increase the number of requests significantly, degrading the performance of
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Fig. 2. The AVPP predictor: (a) high-level overview, (b) timeline of load (LD) and store (ST) execution, and (c)

AT and VT entries.

the overall system. To solve this problem, the L1 cache could be designed with a larger number

of ports, increasing its area and energy overheads. Second, the prediction latency would increase

because of the contention and conflict misses caused by demand requests.

Predictions are made in two steps at the early stages of each load instruction. First, the AT

is accessed with the instruction address ❶. If the AT hits and the confidence counter is saturated

(a.k.a. the address prediction is reliable), then the AT generates a predicted address ❷ and AVPP

moves on to the second step. Otherwise, AVPP does not generate a load value prediction. Second,

the VT is indexed by the predicted address generated by the AT in the first step. If the predicted

address hits in the VT, then the VT returns the predicted value ❹, and the processor feeds this

value to the dependent instructions, which are executed speculatively. Otherwise, the processor

does not speculate.

In a single-core system, AVPP predicts the load value correctly if the predicted address is correct.

In case the address prediction is wrong, the value prediction would also likely be wrong (unless

the memory location at the wrong predicted address has the same value as the memory location of

the correct load address). If the value prediction is wrong, then the confidence counter is reset. In

a single-core system, we keep the contents of VT coherent with memory by updating the VT with

the new values generated by store instructions. In Section 4.3, we explain how our mechanism

works in a multi-core system.

Predictor Updates are made at commit time. The AT is updated with the load address generated

by the instruction ❺, which at this point of the pipeline is already known. The VT is updated ❻
with (1) the values prefetched by our mechanism and (2) the values of each store instruction (to

keep the VT coherent with memory).

4.2 Value Prefetching: Increasing the Hit Rate in the VT

To improve the hit rate in the VT, AVPP uses the prefetch address to prefetch data into the VT that

is predicted to be accessed by future instances of the same load instruction. The AVPP prefetch

address is generated at address prediction time, and it is used to prefetch data into the VT only

when the predicted address generated in the AT is reliable.

Figure 3 illustrates why the VT needs a prefetching mechanism. The AT column shows the

predicted address for the load instruction and the VT column shows if the predicted address hits or

misses in the VT. The load instruction represented in the figure follows an address pattern with a

stride-4 pattern. Figure 3(a) and Figure 3(b) show six consecutive predictions. We assume that all

the address predictions are correct in AT (a.k.a., the predicted address is equal to the load address).

Figure 3(a) shows a naive VT update policy, where the VT updates are made with the values of

the load addresses that are accessed by the load instructions. The VT-Update column shows the

address whose value updates the VT at the commit time of the load instruction. With this policy,

a simple stride pattern in the load address will always miss in the VT (i.e., not obtaining any valid

value prediction).
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Fig. 3. Examples of (a) VT update without prefetching and (b) VT update with prefetching.

Figure 3(b) shows the prefetching-based VT update policy, which updates the VT with the value

of the prefetch address calculated by our value prefetching mechanism (VT-Prefetch). The prefetch

address is predicted to be used some iterations ahead of the current instance of the load instruction.

In the first occurrence of the load instruction, the predicted address misses in VT, and the mecha-

nism prefetches the value of addr+8. After two occurrences, the predicted address starts hitting the

VT.

The ideal prefetch distance depends on three main factors. First, the frequency with which the

load instruction is executed. Second, the latency to access the memory location requested by the

load instruction. Third, the probability that other load instructions evict the value from VT. How-

ever, a mechanism that predicts these factors would increase the complexity of the predictor.

We make two observations that simplify the calculation of the prefetch distance in our mecha-

nism. First, if the prefetch is performed too early, the corresponding VT entry has a higher proba-

bility of being evicted from VT. Second, if the prefetch is performed too late, the predicted address

has a high probability of missing in the value table. Considering these observations, we design an

algorithm to calculate the prefetch distance of each load instruction dynamically. In each occur-

rence of a load instruction, AVPP decides between keeping the current distance, increasing it, or

decreasing it. To implement our approach, we add N extra bits (pdis in Figure 2(c)) per AT entry

to indicate the prefetch distance. In our experiments, we found that a maximum distance of 8 (3

bits) is enough to provide good results.

Inspired by the forward probabilistic counters (FPC) used by Perais and Seznec [48], the AVPP

updates pdis with a certain probability (probUp), which emulates a small confidence counter. Fi-

nally, each entry of the AT also requires a direction bit (d in Figure 2(c)) to indicate the direction

of the pdis update (keep, increase or decrease).

For each value prediction, if the predicted address in the AT is reliable, AVPP calculates the

prefetch address with distance pdis and it prefetches the prefetch address value into VT.

The prefetch address and the predicted address are calculated at the same time in the AT, and they

should be generated with low latency and low-cost. Therefore, not all the classical predictors are

suitable for the prefetching part of our AVPP predictor. The main requirement is that the prefetch

address predictor implementation has to be simple. For example, in a Stride predictor, predicting an

address with prefetch distance of 8 is as easy as left-shifting the stride by 3 bits and adding it to the

last value. In other predictors, such as the FCM predictor, the complexity and latency to calculate

the prefetch address can be very high [22, 54]. For this reason, in our evaluation (Section 7) we only

consider the Stride and the DVTAGE predictors for implementing the AT. Unlike the predicted

address, the prefetch address is propagated into the memory access stage in the pipeline (in the

OoO engine). Our prefetch mechanism allocates an entry in the load queue for the prefetch address

(which we call value prefetch entry). Only if the prefetch address and the load address are the same,
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Fig. 4. Increase in memory requests due to value prefetches.

they coalesce into a unique value prefetch entry. The load queue needs an extra bit to indicate if

the entry corresponds to a value prefetch or a demand load.

Figure 4 shows the increase in the memory requests caused by the value prefetch requests, with

the AT implemented either as a DVTAGE predictor or as a Stride predictor (Section 3). In both

cases, the typical increase is under 20%, and the geometric mean on a variety of benchmarks is

under 5%. We show in our evaluation (Section 7) that we can keep the load queue the same size as

the baseline without degrading performance.

Our mechanism adjusts the predictor distance (pdis) dynamically with the goal of prefetching at

the right time to increase the VT hit rate. AVPP detects the reason of the VT miss and acts accord-

ingly. The two reasons why the predicted address can miss the VT are (1) the value prefetching is

late or (2) the value prefetching is too early (and it is replaced by some other value in the VT). The

mechanism is triggered when the predicted address misses in the VT, and it works as follows:

• If the load queue has a value prefetch entry for the predicted address, then the prefetched

memory access is not completed yet. This indicates that the current prefetch distance is too

short, and the distance (pdis) should be increased. Therefore:

—If d is 1 (increase direction), then pdis is increased with probability probUp (if it is not

saturated).

—If d is 0 (decrease direction), then we change the direction of the updates by setting the d

bit to 1 (increase direction). pdis is not updated.

• If the load queue does not have any value prefetch entry for the predicted address, then the

prefetch memory access request must have already been served and also evicted from the

VT. This indicates that the current prefetch distance is too large, and the distance (pdis)

should be decreased. Therefore:

—If d is 0 (decrease direction), then pdis is decreased with probability probUp (if it is not

zero).

—If d is 1 (increase direction), then we change the direction of the updates by setting the d

bit to 0 (decrease direction). pdis is not updated.

If the predicted address hits in the VT, then pdis is not updated.

4.3 Coherence in Multi-core Processors

In multi-core processors, different cores could have different versions of the same data in their

private caches. Most modern multi-core processors keep the data coherent between cores by im-

plementing a cache coherence protocol in hardware.

The VT is coherent with memory in a single-core processor, but to keep the data in VT coherent

in a multi-core processor, we would need a VT coherence mechanism. To keep the design simple,

our approach does not keep the VT coherent with memory, which might cause some additional

mispredictions. These mispredictions do not affect the correctness of execution. In our evaluation
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Fig. 5. Different policies for predictor update, predictor availability and in-flight pending predictions.

with multi-core processors (Section 7.11) we do not observe any mispredictions caused by inco-

herent data in VT.

5 TAXONOMY OF VALUE PREDICTION POLICIES

A variety of value prediction proposals do not explain or pay much attention to the description

of the predictor policies used in their mechanisms, which makes some of these proposals difficult

to reproduce and compare with. In an attempt to normalize these design choices, we introduce

a new taxonomy of different policies for three fundamental aspects of value prediction: predictor

update, predictor availability, and in-flight pending updates. Our taxonomy is general: It can be

applied to load value prediction or value prediction for all instructions. Previous taxonomies [53]

cover several aspects of the microarchitecture details, but ours is the first covering these three

prediction-level considerations. We evaluate the design space of our taxonomy in Section 7. Fig-

ure 5 summarizes all the policies that we discuss in the following sections.

5.1 Predictor Update Policies

The value predictor can be updated in different places in the pipeline. In our taxonomy, as il-

lustrated in Figure 5(a), we include two policies. First, the correct update policy, in which the

predictor is updated at the commit stage. The correct value is known at this point, so the predictor

is updated with the correct value.

Second, the speculative update policy, in which the predictor is updated just after making

the prediction at the fetch stage, and before dispatch time. As the correct value is not known at

this point, the predictor is updated with the predicted value. With the speculative update policy, a

prediction is based on previous speculative updates. When a misprediction is detected (at commit

time), the predictor is updated with the correct value, by either resetting the entry or by restoring

the old state before the speculative update [27]. In this case, the complexity of restoring the old

state of the prediction entry depends on the predictor. A simple last value predictor only requires

overwriting the speculative value with the correct value.

We can also implement a hybrid approach that only updates the predictor speculatively at fetch

time if the prediction is reliable. Otherwise, the predictor is updated with the correct value at

commit time. In both cases, the prediction is validated at commit time. To implement this hybrid

policy, we need an additional bit in each entry to indicate if the predictor is speculatively updated

at fetch time, to avoid duplicate updates at commit time.

5.2 Prediction Availability Policies

To speculate using a predicted value, the predicted value has to be ready at dispatch time. How-

ever, this does not always happen, as the prediction can be delayed for different reasons (predictor

contention, waiting for previous predictions, etc.). The system can be designed in two different

ways to deal with an instruction that doesn’t have the prediction ready at dispatch time. First, the
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Fig. 6. Back-to-back prediction in an LVP and in a Stride predictor.

pipeline can be stalled waiting for the prediction (delay dispatch policy). Second, the prediction

can be discarded (there is no value speculation), not delaying the dispatch time (not-delay dis-

patch policy). In this case, the predictor is still updated at commit time for training. Figure 5(b)

shows the behavior of both policies when the prediction latency is too long.

5.3 In-flight Pending Update Policies

If two instances of the same instruction are executed very close in time, then the older instance

of the instruction could read the predictor before the younger instance updates it. We define in-

flight pending update as the predictor update that an in-flight instruction (a.k.a., an instruction

being executed) will eventually perform at the back-end of the pipeline at commit time. We can

manage in-flight pending updates of different instances of the same instruction with two different

policies. The first policy ignores the in-flight occurrences of the same instruction, and it gets the

prediction without waiting for the updates of the in-flight instructions, which can produce wrong

value predictions (in-flight ignore policy). The second policy stalls the pipeline, waiting for all

the in-flight instructions to update the predictor (in-flight wait policy). We define in-flight de-

lay as the time that a back-to-back prediction is delayed waiting for the predictor update from

the previous instance of the same instruction. The in-flight wait policy is a reasonable option for

load value prediction, as the number of in-flight load instructions is small. Figure 5(c) shows the

behavior of both policies when executing two instances of the same instruction back-to-back.

The in-flight pending update policies are not applicable to predictors that do not base their

predictions on values generated by previous instances of the same instruction (i.e., they do not

have in-flight delay). This is the case for LVP or VTAGE predictors but not for Stride or FCM

preditors. Figure 6 shows an example of a back-to-back prediction with two different predictors.

First, the LVP predictor, despite its name, does not need to wait for the previous prediction to

correctly predict the current instance of the instruction as long as the predictor is trained (i.e., the

in-flight delay is zero). Second, the Stride predictor needs to wait for the update from the previous

instance of the same instruction to make a correct prediction. Otherwise, it would calculate the

prediction based on a stale value. In this example, the mechanism updates the predictor using

the speculative update policy from Section 5.1. The FCM predictor has an even longer in-flight

delay [48]. In general, a predictor with a long in-flight delay could have performance problems

with the in-flight wait policy (i.e., in tight loops that could execute several instances of the same

instruction very close in time).

We can implement the in-flight wait policy by adding an extra bit in each predictor entry to

indicate if there is another instance of the same instruction in the pipeline.

5.4 Putting It All Together

The previous three types of policies may have correlations between each other. We analyze these

correlations in pairs of policy types.

First, the predictor update policies and in-flight pending update policies: the time at which the

predictor update is done in the pipeline influences the duration of pending updates. For example,
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Table 1. Area of Each Value Predictor as a Fraction of the Area of a 32KB

8-way L1 Data Cache (0.33mm2)

LVP 2D-Stride DFCM DVTAGE VTAGE AVPP-DVTAGE AVPP-Stride

1.7% 2.6% 3.6% 2.6% 3.6% 2.8% 2.8%

if the predictor update is done in the front-end (speculative update policy), the duration of the

pending predictions is short. In this case, waiting for the prediction (in-flight wait policy) may

provide the best performance, as it barely stalls the pipeline and increases the predictor coverage.

Second, the predictor availability policies and the in-flight pending update policies: whether or

not to wait for the prediction at dispatch time influences the duration of pending updates. For

example, if the pipeline stalls waiting for a prediction at dispatch time (delay dispatch policy), the

pending update time also increases.

Third, the predictor update policies and the predictor availability policies are not correlated.

The best combination of policies and the best implementation depends on the target microar-

chitecture. Section 7.4 evaluates all possible combinations of the different policies from the three

policy types.

6 REDUCING THE COMPLEXITY OF VALUE PREDICTION

Value prediction has not been implemented in real processors yet mainly due to its complexity

issues. We have already discussed some recent works that focus on reducing complexity [46–49]

in Section 1. We go one step further and analyze some problems and complexities of predicting

values for all instructions, and we study and propose new low-cost organization alternatives and

new policies to implement load value prediction.

6.1 Predictor Area Footprint

One of the advantages of speculating on load instructions is that the predictor can be smaller, as

it has to handle only a fraction of the total instructions.

Table 1 shows the area footprint of the predictors we evaluate as the fraction of the area of a

32KB 8-way L1 data cache. We calculate the area with McPAT [33] configured with a Westmere

OoO architecture with a frequency of 2.4GHz and 22nm technology. The total area of the core

(including L1 and L2 caches) is 11.4mm2, whereas the L1 data cache is 0.33mm2. The predictors we

use are configured in the same way as in the evaluation (Section 7).

We make two main observations from the table. First, the area of the load value predictors is

very small compared to the data cache. Second, our predictors (AVPP-DVTAGE and AVPP-Stride)

occupy a similar area as the state-of-the-art predictors.

6.2 Register Port Pressure

The physical register file (PRF) consumes an important portion of the energy in an OoO en-

gine [71], and value prediction puts even more pressure on it. Figure 7 shows the reads and writes

in the PRF during the instruction flow in the front-end and the back-end in-order pipeline stages.

Figure 7(a) represents a processor that does not implement value prediction. The instruction reads

the two input registers (requiring two read ports), and it writes to the output register at commit

time (requiring one write port).

Figure 7(b) shows a classical scheme proposed in the state-of-the-art value prediction

schemes [47, 48]. It requires reading two input registers and writing the prediction into the des-

tination register before dispatch. The prediction is also written into a FIFO queue to be validated

at commit time. After the OoO execution, the resulting data is written into the PRF (like in an
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Fig. 7. PRF port pressure in (a) a processor without prediction, (b) a processor with value prediction, and (c)

our proposal for load value prediction.

unmodified processor), and finally, the prediction is validated by comparing the real value in the

PRF with the predicted value in the FIFO queue. This scheme requires one additional read port

and one additional write port (two write ports in total), which increases the complexity of the PRF

substantially. The extra write port causes the growth of the power consumption by 50% [48, 71]

(although, this extra power consumption could be reduced by limiting the number of predictions

per cycle, allocating physical registers in different register file banks for consecutive instructions

[48], or using other optimization techniques [11, 18, 64]).

To alleviate the PRF port pressure, we propose a new specific organization for load value pre-

diction. Figure 7(c) shows a brief summary of our approach. As in existing value prediction ap-

proaches, the two input registers are read and the output register is written before dispatch. We

leverage the Load Queue (LQ), which is part of modern OoO processors, to keep the correct ver-

sion of the data when received from memory, so our scheme does not need an additional FIFO

queue. When the value prediction is reliable, the speculative value is written into the PRF, and

the value coming from memory is written in the LQ. At commit time, the validation is done by

comparing the values in the PRF and in the LQ. The LQ does not need any extra read/write ports,

as the prediction validation and/or the PRF writing are done in the same pipeline stage, requiring

just a single access to the LQ.

Compared to performing value prediction for all instructions, our approach reduces the port

pressure in two main ways. First, when a prediction is correct, the value in the PRF is already the

correct value at commit time, so the PRF does not need to be updated, reducing the write pressure.

Implementing this optimization requires only a small modification to disable the writing of the

value from the LQ to the PRF in case of a correct load value prediction. The probability of mis-

predicting is very low, as a simple confidence estimation mechanism can increase the accuracy to

more than 99% (see Section 7). Second, the extra reads and writes in the PRF are performed only

for load instructions, which are a fraction (≈25%) of all instructions. Notice also that all the opti-

mizations for reducing the register port pressure in value prediction [11, 18, 64] are also applicable

to our proposal.

Another approach to eliminating the FIFO queue is to carry the predicted value as part of the

payload of the load instruction. The additional payload bits require additional FFs/bitcells between

the dispatch and execution stages, but it is more desirable than adding read ports to the already

expensive PRF (area, energy, cycle time). Alternatively, we can eliminate the FIFO queue by just

checking (not updating) the prediction after the load execution (e.g., writeback) and setting a flag

in the ROB for a load with a mispredicted value.

6.3 Thrashing and Bandwidth

Performing value prediction for all instructions can pollute the predictor because of the large

number of lookups and updates. As a consequence, thrashing could be a problem if the prediction

table is not large enough. Performing value prediction only for load instructions lowers pollution,

because the reads and updates are significantly reduced. Therefore, we can implement smaller

tables. The number of unique static load instructions is on the order of only a few thousand in our

evaluated benchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 49. Publication date: December 2018.



49:14 L. Orosa et al.

Previous work [48] uses a predictor with 8k entries, and BeBoP [49] reduces this number to

only 2k, because it uses a predictor that works with blocks of instructions, not with individual

instructions. In our evaluation of load value prediction, we have good results with a predictor of

only 512 entries, which is a 75% reduction compared with BeBoP [49], with good speedup results

(see Section 7). The predictor misses are less than 10% in most of the benchmarks for a predictor

of this small size.

Performing value prediction for all instructions requires potentially serving several prediction

requests per cycle. Although the predictor has several cycles to provide the predicted value, if the

processor issue width is too large, it could create a bottleneck in the predictor. A practical way to

alleviate this problem is to use value prediction with processors that have a moderate issue-width.

In this work, we demonstrate that predicting only loads has significant performance benefits in

these relatively modest processors (4-issue processor in our case) at low hardware cost.

6.4 Microinstructions with the Same PC

In microarchitectures that implement ISAs with complex instructions, e.g., x86, each instruction is

potentially decoded into several microinstructions (μops). Thus, several microinstructions could be

associated with the same instruction address, and one unique entry in the predictor could corre-

spond to several microinstructions (leading to aliasing). In our tests, the fraction of x86 instructions

that are decoded into more than one μop is up to 35% in some cases, which is not negligible.

There are several ways to solve this problem when performing value prediction for all instruc-

tions. We describe two of them. First, by hashing the μop sequence number to the index used for

indexing the predictor. This solution increases the design complexity. Second, by using a larger

granularity than a single instruction. For example, BeBoP [49] uses a block-based value predictor,

in which each entry is associated with a fetch block and not with individual instructions.

Fortunately, this is not a problem if we perform value prediction only for load instructions.

Instructions that contain more than one load microinstruction are rare in the x86 ISA: Only the

instruction for comparing string operands produce two load microinstructions (CMPSB, CMPSW,

CMPSD, CMPSQ). The presence of these instructions in our benchmarks is negligible: only the

h264re f benchmark executes 1 per 5 billion instructions, and the perlbench benchmark executes

one per 400.000 instructions.

6.5 Identification of Load Instructions

Load value prediction has the disadvantage that, unlike value prediction for all instructions, it

needs to identify instructions that execute at least one load. To do so, the prediction is done when

this information is available at the pre-decode stage, which can potentially delay the prediction by

1 cycle. We take this delay into account in our evaluations.

7 EVALUATION

In this section, we compare our AVPP load value predictor with five state-of-the-art load value pre-

dictors in single-core and multi-core systems, in terms of both performance and energy efficiency.

We also compare AVPP with prefetching and memory dependence prediction techniques.

Our evaluation mainly considers load value prediction, as we have already shown that predicting

all instructions provides incremental speedup benefits compared to load value prediction (Figure 1)

while requiring much higher cost (Section 6).

7.1 Experimental Setup

Our evaluation uses a customized version of the ZSIM open-source simulator [51] with support for

load value prediction. ZSIM resembles a four-issue Westmere microarchitecture that is validated
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Table 2. Configuration of Our Baseline System

core

Westmere x86-64bit, 4-issue

TAGE branch pred., 4 tag tables (32KB)

128-entry ROB, 32-entry load queue

32-entry store queue

L1I Cache 32KB 4-way, LRU, 3-cycle latency

L1D Cache 32KB 8-way, LRU, 4-cycle latency

L2 Cache
256KB, 16-way, LRU, 12-cycle latency

16 MSHRs

Prefetcher L2 prefetcher, 16 stream buffers, 64-line
buffers

Memory
DDR3-1333-CL10, 4 ranks per channel,

8 banks per rank

Policies
CNW: Correct update, Not-delay dispatch

and in-flight Wait

Table 3. Predictors Considered in Our Evaluation.

Our Proposed New Models are Bold-Faced

Type Entries Latency In-flight delay

LVP

2D-Stride

DFCM

DVTAGE

VTAGE

AVPP-DVTAGE

AVPP-Stride

512 1 cycle —

512 2 cycles 1 cycle

512 3 cycles 2 cycles

512 3 cycles 1 cycle

512 2 cycles —

512+64 4 cycles 1 cycle

512+64 3 cycles 1 cycle

against a real Westmere machine, reporting an IPC average error of 9.2%/11.2% for single/multi-

thread applications [51]. Table 2 shows our baseline configuration, which includes a 32KB 8-way

data cache with 4-cycle latency, a 32KB 4-way instruction cache with 3-cycle latency, a 16-way L2

cache with 12-cycle latency and a Stream prefetcher. The baseline load value prediction policies

are correct update, not-delay dispatch and in-flight wait.

Our ZSIM Westmere model implements load-store ordering, load forwarding, fences, and TSO.

Each load is implemented as an address computation μop and a memory read μop, and it does

not issue until all prior store addresses have been resolved. the processor can fetch 16B/cycle (the

limit is the predecoder), and up to 4 μops/cycle. The processor is composed of 6 execution ports, 19

integer functional subunits, eight floating-point subunits and 36 reservation station entries. Branch

mispredictions are resolved at commit time. They cancel all in-flight data misses that are in the

wrong path. Branch misprediction penalties are simulated according to a measured misprediction

penalty of at least 17 clock cycles in the real Westmere architecture. The same mechanism is used

in our implementation for recovering from value mispredictions, which leads to a misprediction

penalty that is in the same order as the branch misprediction penalty. Long latency loads can

increase this penalty (up to 45 cycles in our tests), but for most of the benchmarks we tested, the

average value misprediction penalty is similar to the branch misprediction penalty.

We run a subset of the SPEC2006 and SPEC2000 benchmark suites with their reference inputs,

and a subset of benchmarks from PARSEC [7] and SPLASH2 [67] with their native inputs. We select

a diverse set of workloads, considering both good and bad candidates for load value prediction. We

use the Pinpoint [50] methodology to find representative simulation points, and Pinplay [45] to log

these regions and deterministically replay them. We generate the single-core PARSEC and SPLASH

Pinpoints by running the application with a single thread. Our multi-core evaluation (Section 7.11)

is performed with 10 billion instructions of the region of interest, without using Pinpoints.

We evaluate the behavior of different value predictors for load value speculation. Table 3 shows

the number of entries, the latency (in cycles), and the in-flight delay (see Section 5.3) of the predic-

tors evaluated, namely LVP, 2D-Stride predictor, DFCM, DVTAGE and VTAGE, as a diverse set of

the best state-of-the-art predictors, and the AVPP-DVTAGE and AVPP-Stride as our new contribu-

tions (Section 4). The AVPP predictors are named depending on the predictor used in the AT. We

choose candidates with and without in-flight delay to show the influence of the in-flight pending

update policies (Section 5.3) in the performance. Latencies are calculated according to Section 3

and Section 4.
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All predictors use 3-bit FPC counters [48] for prediction confidence estimation, with the vec-

tor {1, 1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
32 ,

1
32 ,

1
32 } (that resembles a 7-bit counter). When the prediction is correct, the

counter is increased with the probability defined by the vector. The counter is reset on a mispre-

diction, and the prediction is used only when the counter is saturated. We validate predictions at

commit time, and we implement pipeline flushing for recovering from mispredictions.

We set up all predictors with 512 entries as our baseline system for maintaining a good trade-off

between area and performance. In the AVPP predictors, AT has 512 entries and VT has only 64

entries (Section 7.5 justifies this decision). Each entry in AT has a 3-bit pdis, and 1-bit d (Section 4).

All tagged tables of the predictors are implemented as a direct-mapped cache.

We implement a four order DFCM in our evaluation. In the VHT, each new stride is encoded

into 16 bits with a hash function based on XORs [54], and the VPT is indexed by this compressed

context (64 bits total). Furthermore, we add a counter to each VPT entry to limit replacements due

to interference [48]. The counter is increased if the value matches the one already stored, and it is

decreased otherwise. An entry is replaced only when the counter is zero.

The implemented DVTAGE predictor [49], in addition to the base predictor and the last value

table (512 entries each), is composed of 6 tagged tables (64 entries each). It uses a useful bit in the

tagged tables, and tags of 12+rank bits, with rank going from 1 to 6. The minimum history length

is 2, and the maximum is 64. The VTAGE predictor has the same configuration, but without the

last value table, and saving values (64 bits) instead of strides.

All the predictors based on strides use only 16 bits to store the stride. We found out that strides

are usually small, and the impact of using only 16 bits instead of 64 bits is negligible in terms of

performance. Furthermore, AVPP predictors have 32-bit fields in the AT for storing the addresses.

We also implement a Hybrid predictor composed of two predictors: (1) AVPP-DVTAGE predictor

and (2) a 2D-Stride predictor. For choosing between predictors, we add an FPC confidence counter

per predictor, that indicates the reliability of each predictor. The prediction is only used in case

the counter is saturated, and in case the counters for both predictor are saturated, we choose the

AVPP predictor by default.

We heavily modified the ZSIM simulator to support load value prediction. We took into account

the latencies in Table 3, for reading and updating the predictor, as well as the appropriate order

and timing of the lookups and updates (depending on the policies), and the critical paths. Each

predictor has one read port and one write port to reduce complexity. We simulate port contention.

Additionally, we include a 1-cycle delay to identify loads in our simulator (see Section 6.5).

All the predictors are pipelined, implying that they can accept a new lookup/update request each

cycle. Predictor updates have the same latencies as the lookups in almost all cases (DFCM has one

extra cycle). We take into account all predictor latencies and contention in our simulations.

From the described policies in Section 5, we choose for our baseline the CNW (Correct update,

Not-delay dispatch, and in-flight Wait) policy as it is one of the best performing in our tests (see

Section 7.4).

Energy results are obtained with a customized version of McPAT [33] to take into account dif-

ferent value predictors, additional operations in the register file and the load queue, value mispre-

dictions, and extra prefetch memory requests.

7.2 Results in a Single-core Processor

To show the benefits of AVPP, we simulate the system described in Table 2 implementing the five

value predictors described in Table 3, running the benchmarks in Table 4.

Figure 8 shows the speedup of a processor with eight different load value predictors compared

to the baseline (no value prediction). We make three main observations. First, AVPP outperforms

all state-of-the-art predictors in 16 of the 23 benchmarks. The average speedup of AVPP is 11.2%
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Table 4. Single-core Benchmarks

SPEC2000 art, gzip, lucas, sixtrack, equake

SPEC2006
astar, bzip2, gcc, libquantum, mcf, omnetpp, perlbench, bwaves,

dealII, leslie3D, namd, soplex, tonto, wrf, zeusmp

PARSEC/SPLASH2 (1 thread) bodytrack, raytrace, water_spatial

Fig. 8. Speedup and energy comparison of different value predictors.

Fig. 9. Coverage of the evaluated predictors.

versus 5.9% of the best state-of-the-art predictor. Second, the address predictability leveraged by

AVPP is reflected in the performance improvements of the benchmarks art , libquantum, bwaves ,
andдzip, where none of the state-of-the-art predictors achieve performance similar to AVPP. Third,

the Hybrid predictor does not have much better performance than AVPP alone, as AVPP alone

covers most of the accurate predictions made by the 2D-Stride predictor. We conclude that (1)

AVPP is very effective and (2) a Hybrid predictor is not worth the hardware cost compared to

AVPP alone.

Figure 8 (bottom graph) shows the energy reduction provided by the different value predictors.

The main observation is that almost all the predictors provide energy savings and that these sav-

ings are directly correlated with the speedup the predictor provides. AVPP’s energy savings is 3.7%

versus 2.6% of the best previous predictor.

To better show the performance of the load value predictors, we define coverage and accuracy:

(1) coverage of a predictor is the percentage of loads to which a prediction is used for speculation,

and (2) accuracy is the percentage of predictions used for speculation that are correct. Figure 9

shows the coverage, and Figure 10 shows the accuracy of the evaluated load value predictors.

The main observation from these figures is that our AVPP predictor achieves better coverage than

with other predictors in most of the benchmarks while maintaining a very high level of accuracy.

On average, our best AVPP predictor (AVPP-DVTAGE) has better coverage (44%) than DVTAGE,
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Fig. 10. Accuracy of the evaluated predictors.

Fig. 11. Cache hit distribution among the predicted loads (the ones covered in Figure 9) for the AVPP-

DVTAGE predictor.

Fig. 12. Speedup of AVPP-DVTAGE when only the prefetch is active (AVPP-Prefetch), when only the predic-

tion is active (AVPP-Predict), and when both are active (AVPP-Full).

the best state-of-the-art predictor (36%). Because of the use of FPC confidence counters, AVPP’s

accuracy is very high, which minimizes the total squash penalties.

Figure 11 shows the cache hit distribution of the predicted (i.e., covered) load instructions for the

AVPP predictor. The results are similar for the other predictors. The main observation is that most

of the predicted loads are L1 cache hits. This observation suggests that, for the tested workloads

and system configurations, load value prediction should be complementary to prefetching. We will

demonstrate this in Section 7.9 and Section 7.10.

7.3 Where Are the Benefits Coming From?

We analyze whether the AVPP benefits are coming from AVPP prediction or AVPP prefetching

(Section 4). Figure 12 shows the performance of our AVPP only with prefetching (AVPP-Prefetch),

only with load value prediction (AVPP-Predict) and the complete AVPP with both prefetching and

load value prediction (AVPP-Full).

We make three main observations. First, the benefit of AVPP prefetching is low in general (1.8%

speedup on average). This is because in many cases the prefetch requests are L1 hits, as we show

in Figure 13. Second, AVPP value prediction has better performance than value prefetching (4.8%

speedup on average). Third, when the complete AVPP predictor (with both prediction and prefetch-

ing) is used, the performance improvement is significant (10.6% speedup in average). The main

reason for the large speedup jump when full AVPP is used is that the prefetches in VT highly
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Fig. 13. Distribution of the AVPP-DVTAGE prefetch

requests that hit in L1, L2 and main memory.

Fig. 14. Coverage of AVPP without prefetch-

ing (AVPP-Predict), and the full AVPP including

prefetching (AVPP-Full).

Fig. 15. VT hit rate with and without prefetching.

Fig. 16. Impact of the implemented policies (Section 5.3).

increase its hit rate, and consequently, the prefetching coverage also increases. Figure 14 shows

the coverage of the full AVPP load value predictor (AVPP-Full) and the AVPP predictor without

prefetching (AVPP-Predict). The average coverage of AVPP without prefetching is 12.3% (99.7%

accuracy), whereas in the full AVPP is 50.2% (99.9% accuracy).

Figure 15 shows the hit rate of the VT table in our AVPP predictor with prefetching (AVPP-

DVTAGE and AVPP-Stride) and without prefetching (AVPP-DVTAGE-Noprefetch and AVPP-

Stride-Noprefetch). The prefetching schemes use dynamic distance with a 5% probUp, and non

prefetching implementations update the VT with the value of the current instruction. The main

observation is that dynamic prefetching improves the VT hit ratio in almost all benchmarks.

7.4 Impact of the Value Prediction Policies

Figure 16 shows the average speedup of the combination of the policies described in Section 5. The

first letter indicates Correct update (C), Speculative update (S), or Hybrid update (H) (Section 5.1).

The second letter indicates Delay dispatch (D) or Not-delay dispatch (N) (Section 5.2). The third

letter indicates in-flight Ignore (I) or in-flight Wait (W) (Section 5.3).

We make four main observations. First, the combination of the Delay dispatch (D) and in-flight

Wait (W) policies generally have poor performance, because they create a lot of contention to-

gether. With these policies, the predictor is on the critical path, and it can generate stalls in the
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Fig. 17. Impact of predictor size on speedup. For

this study, the AT and the VT have the same size

in the AVPP predictors, to emphasize the effect of

AT size.

Fig. 18. Impact of VT table size for an AVPP

predictor with an AT of 512 entries.

pipeline. Second, Correct update (C) and Hybrid update (H) policies have similar behavior, which

indicates that the hybrid policy provides almost no benefit. Third, in-flight Wait (W) has better re-

sults than in-flight Ignore (I) if it is not combined with Delay dispatch (D). This shows the benefits

of making the prediction using the updated value from the previous in-flight instruction, provided

that waiting for the updated value does not delay the dispatch time. Fourth, LVP and VTAGE pre-

dictors, which do not have in-flight delay (Section 5.3), always provide performance improvements

compared to the baseline, independently of the policy.

These observations are valid for the tested microarchitecture, and they can not be easily gener-

alized or formalized. The study of these policies in microarchitectures with different specifications

and design choices is out of the scope of this work.

7.5 Impact of the Predictor Size

Figure 17 shows the impact of the predictor size on system performance. Unlike our baseline sys-

tem, in this experiment we over-sized the VT (i.e., with the same size as AT) to emphasize the

impact of the AT size in the AVPP predictors. We make three main observations. First, a large

predictor table does not provide a significant performance improvement. Increasing the number

of entries from 512 to 8,192 does not affect performance significantly. Second, the most significant

performance jump is produced when we increase the size of the predictor from 256 to 512 entries.

This is the reason why we establish 512 entries as our baseline.

Figure 18 shows the impact of the VT size of the AVPP predictor. The figure shows the speedup

of the AVPP-DVTAGE and the AVPP-Stride predictors when changing the VT size from 512 to 1. In

this experiment the AT has a fixed size of 512 entries. The main observation is that the performance

benefits of having 512 entries in the VT are very close to those of having 64 entries, which is the

reason why we choose 64 as the VT size for our baseline.

7.6 Impact of the Prefetch Dynamic Distance Mechanism

AVPP calculates the prefetch distance dynamically by observing the VT misses (Section 4.2). Fig-

ure 19 shows the impact of the probability of updating the prefetch distance (probUp). We make two

observations. First, different values of probUp can significantly change performance for specific ap-

plications in AVPP-DVTAGE (e.g., moving from probUp=1% to probUp=5%, improves the speedup

by 8% for art and by 6% for water_spatial ). In AVPP-Stride we do not observe large differences.

Second, the AVPP-DVTAGE predictor achieves the best average speedup with probUp=5%, and the

AVPP-Stride predictor achieves the best average speedup with probUp=1%. We chose probUp=5%

for our baseline as AVPP-Stride performs better with probUp=5% than AVPP-DVTAGE performs

with probUp=1%.

Figure 20 shows the predictor distance (pdis) distribution when probUp is 5%. We make two

observations. First, as the common case is hitting in L1 (low latency), most of the prefetch
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Fig. 19. Effect of the probability of updating the

prefetch distance (probUp) on AVPP speedup.
Fig. 20. AVPP prefetch distance distribution. The

common case is distance=1 (i.e., to prefetch the

next address), but other distances are also signif-

icant in some benchmarks.

Fig. 21. Impact of the LQ size on the predictor performance. The load queue is the same size in the baseline

system and in the value prediction system.

distances are one (next value). Second, some benchmarks (e.g., art ) have a significant number

of distances larger than one, which contributes to significant performance improvements. In the

case of sixtrack, although most of the prefetches have a distance greater than one, we do not see

large performance benefits as sixtrack does not exhibit many data dependencies and consequently,

it cannot benefit much from value prediction.

7.7 Impact of the Load Queue Size

We quantify the impact of the load queue size on the performance of a system implementing AVPP,

with the goal of measuring the pollution caused by the additional value prefetch requests in the

load queue. Figure 21 shows the speedup provided by several load value prediction mechanisms

compared to our baseline. Both baseline and load value prediction based systems have the same

load queue size. Our main observation is that the size of the load queue does not have much in-

fluence on the performance of our AVPP predictors. We conclude that value prefetching of AVPP

does not add much pressure to the load queue.

7.8 Sensitivity to the Cache Hierarchy

We study the sensitivity of load value prediction to the cache hierarchy. Table 5 shows the different

configurations we evaluate, including 1) our baseline described in Section 7.1 (Baseline), 2) our

baseline augmented with a 2MB L3 cache (Baseline+L3), and 3) a larger system with double-size

L1, L2, L3 caches (Baseline+L3 Large). Figure 22 shows the speedup results (plotted with color

bars), as well as the Instructions per Cycle (IPC, plotted with hoops) for the three configurations.

We make two observations. First, as expected, IPC increases when the cache size is larger. Sec-

ond, the speedup of value prediction does not depend much on the cache configuration, because

most of the value predictions are for load instructions that hit in L1 (see Section 7.2). We conclude

that neither AVPP nor other load value predictors are largely influenced by the cache hierarchy

configuration, which suggests that load value prediction could be a low-cost performance accel-

erator for processors with various cache sizes.
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Table 5. Configurations for the Cache

Sensitivity Analysis

Baseline L1D&I: 32KB, L2: 256KB

Baseline+L3 L1D&I: 32KB, L2: 256KB,

L3: 2MB

Baseline+L3 large L1D&I: 64KB, L2: 512KB,

L3: 4MB

Fig. 22. Speedup of load value prediction with the three

cache configurations shown in Table 5.

Fig. 23. Interaction between store set prediction (SS), L2 prefetching (Prefetch), and Load Value Prediction

(LVP).

7.9 Comparison with Prefetching and Memory Dependency Prediction

There are other techniques than load value prediction to hide load latencies and to break true

data dependencies. In this section, we analyze two of them, data prefetching and memory depen-

dence prediction, which are already present in most commodity processors, and we study their

interactions with load value prediction.

Memory dependence prediction allows dispatching loads before the previous store addresses

have been resolved, in case the prediction is that they are accessing different addresses. If the

speculation was wrong, then the pipeline has to be flushed, similarly to value prediction or branch

prediction.

Store Set Prediction [14] is an easy way to implement memory dependence prediction. The

scheme identifies the set of stores on which a load depends (the store set) and communicates that

information to the instruction scheduler. We implement this technique with a Store Set ID table

(SSIT) (indexed by the instruction PC), which maintains the store sets identifier (SSID), and with a

Last Fetched Store Table (LFST) (indexed by the SSID), that maintains dynamic information about

the most recent store in the store set. In our evaluation, we use store sets with an SSIT of 4096

entries, and an LFST of 128 entries.

Our baseline is the same as in Table 2 but without any prefetcher. Figure 23 shows the speedup

of the system with the store set predictor (SS), the L2 prefetcher (Prefetch), load value prediction

with an AVPP-DVTAGE predictor (LVP), and the combination of all of them.

We make three main observations. First, the performance improvement of SS over our base-

line is negligible (the bars are not visible in almost all the benchmarks). We even tested a perfect

memory dependence predictor (an oracle) and find similar negligible performance improvements.

The cause is the relatively narrow 4-issue processor, which does not experience that many loads

to wait for store resolution. Furthermore, in the evaluated processor, store address calculation and

the store data are two different microinstructions, which reduces the load-store scheduling prob-

lem even more. Second, the L2 prefetcher and our AVPP load value predictor achieve the best

speedups (11% and 8% on average). Third, L2 prefetcher and our AVPP are complementary and, if

implemented together, their speedups are additive (20% average speedup). We conclude that AVPP
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Fig. 24. Performance effect of L1 prefetching vs. AVPP.

is complementary to prefetching and memory dependency prediction. The three mechanisms can

be implemented together in the same system with additive performance gains.

7.10 Comparison with L1 Prefetching

AVPP does prefetching into the VT to increase the predictor coverage and accuracy, but also

brings the data to L1. In this section, we compare our AVPP predictor with two state-of-the-art

L1 prefetching approaches, with the goal of showing the relationship between both. We imple-

mented an L1 Stream prefetcher (similar to the one described in Table 2) and the Access Map

Pattern Matching (AMPM) prefetcher [28]. Both prefetchers request their prefetches through the

load queue.

To analyze the effects of L1 prefetching, we disable L2 prefetching. Other than that, we main-

tain the configuration of the baseline (Table 2). Figure 24 compares the two L1 prefetchers (L1PF-

Stream and L1PF-AMPM) with the AVPP alone (AVPP) and with the AVPP working with the two

L1 prefetchers (AVPP+L1PF-Stream and AVPP+L1PF-AMPM). In this section, we consider the full

AVPP (with both AVPP prediction and AVPP prefetching).

We make three main observations. First, performance improvements provided by the L1

prefetchers (especially AMPM) are significant, as expected (because there is no L2 prefetching).

Second, AVPP provides approximately the same performance benefits as the L1 prefetchers. Third,

when AVPP and the L1 prefetchers are used together, the performance is additive in many bench-

marks. The main reason is that most of the benefits are coming from value prediction (e.g., breaking

true data dependencies), not from prefetching. We conclude that AVPP and L1 prefetching can ef-

fectively coexist in the same system. They are complementary and provide additive performance

benefits.

7.11 Evaluation in a Muti-core Processor

In this section, we evaluate our AVPP predictor in a multi-core processor. The baseline is a 4-core

processor with 32KB L1D&I private caches, 256KB private L2 caches and 2MB (per core) shared

L3 cache (Table 6). We evaluate two different types of workloads (Table 6). First, we evaluate 6

multithreaded applications from PARSEC and SPLASH benchmarks. Second, we evaluate 50 ran-

domly assembled workloads, each comprising 4 benchmarks from Table 4 (Table 6 shows 6 of these

workload mixes). We run all the benchmarks for 10 billion instructions in the region of interest.

7.11.1 Multithreaded. Figure 25 shows the speedup of a system with load value prediction run-

ning multithreaded applications in a multi-core system. Two observations are in order. First, the

AVPP predictors perform better than other predictors in five of six benchmarks. Second, in the

two benchmarks which we also use on single-core evaluation with only one thread (bodytrack

and raytrace), the speedups we observe here are on the same order of those we observe for the

single-core system.
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Table 6. Configuration of the Multi-core Baseline Processor, Multithreaded Benchmarks,

and a Subset of Multiprogrammed Benchmarks with Detailed Results

Processor Configuration Multithreaded Benchmarks Example Multiprogrammed Benchmarks

Cores:
4 cores

PARSEC Bench.:

bodytrack, MIX1: art, art, libquantum, gzip

from Table 2 freqmine, MIX2: leslie3d, soplex, libquantum, dealII

streamcluster MIX3: mcf, gzip, art, bodytrack

Caches:

L1D&I: 32KB

SPLASH2 Bench.:

barnes, ocean_cp, MIX4: wrf, bodytrack, libquantum, bodytrack

L2: 256KB, raytrace MIX5: water_spatial, libquantum, zeusmp, dealII

L3: 8MB water_spatial MIX6: raytrace, gzip, art, wrf

Fig. 25. Speedup of 6 multithreaded workloads. Fig. 26. Speedup of 50 multiprogram mixes of

workloads.

As pointed out in Section 4.3, VT is not coherent with memory, which could cause additional

mispredictions. In our experiments, we do not observe any misprediction due to this cause be-

cause of three main reasons. First, the percentage of invalidations in L1 caches caused by other

cores is very small (the number of invalidation requests is less than 0.002% of the read requests).

Second, the VT is much smaller than the L1 cache, which causes its entries to be evicted and re-

freshed with updated values much more frequently than L1, reducing the probability of having

stale values. Third, AVPP does not speculate until the prediction is confident, which requires 128

consecutive correct predictions in our setup. In regions of code where invalidations are common,

the prediction is not confident and consequently, the probability of misprediction is very low. We

conclude that AVPP outperforms all previous predictors in most of the multithreaded benchmarks

without requiring any coherence mechanisms in the VT.

7.11.2 Multiprogrammed. Figure 26 shows the weighted speedup [17] of a system with load

value prediction running different combinations of single-threaded programs. The figure shows

the speedup on 6 mixes out of 50, and the geometric mean speedup across all 50 mixes. We make

two observations. First, the AVPP predictor outperforms the previous predictors in 40 of the mixes.

Second, the geometric mean speedup across the 50 mixes has similar gains we do observed for our

single-core evaluation (Section 7.2). We conclude that AVPP outperforms all previous predictors

in most of the multiprogrammed workload mixes.

8 RELATED WORK

In this work, we propose a novel load value prediction scheme that (1) is based on address predic-

tion and (2) uses prefetching to increase the prediction coverage and accuracy. AVPP is comple-

mentary to conventional prefetching (Section 7.3). We have already discussed and evaluated other

state-of-the-art value prediction mechanisms [15, 16, 22, 34, 35, 37, 46–49, 54].

Mechanisms that have Similarities with AVPP. AVPP has a similar philosophy with store

instructions as the EXACT [2] branch predictor. EXACT updates the branch predictor information
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when a store is performed to an address which dynamic branch prediction depends on, in a similar

way than AVPP updates the VT when a store is performed. Otherwise, AVPP and EXACT are totally

different mechanisms.

APDP [23] is a stride value predictor for load and store instructions that prefetches the next load

address. It consists of a single 2,048-entry Memory Prefetching Table (MPT), each MPT entry com-

posed by several fields including the last effective address, the current stride, and the prefetched

value. It also implements a 1,024-entry Prefetching Validation Vable (PVT) that maintains the state

of the prefetched values in the MPT. When a store instruction overwrites a load address present in

the MTV, APDP invalidates such entry. APDP is not designed for being a simple mechanism, and as

a consequence it has a high implementation cost. APDP has four main differences with our AVPP.

First, AVPP is simple and easy to integrate into current microarchitectures: it does not require se-

lective re-execution on mispredictions and it leverages existing microarchitectural structures (e.g.,

load queue) instead of incorporating new hardware. Second, AVPP predicts only load instructions

to improve the performance/cost ratio. Third, AVPP decouples the address and the value tables

for enabling a smaller and simpler predictor, that it is also more accurate. Fourth, AVPP uses a

prefetching mechanism that is dynamic and more accurate.

Decoupled Load Value Prediction (DLVP) [58] is a context-based load value predictor that

predicts the load address in the fetch stage, requests this address from memory, and stores the

prefetched value into a non-speculative value table (that resembles the AVPP value table) before

dispatch time. DLVP has at least three major differences from AVPP. First, DLVP prefetches the

value of the predicted address for the current load instruction. As DLVP relies on accessing the

L1 cache, the prediction fails when the predicted address misses in L1, or when the memory sys-

tem is busy serving a demand memory request, which limits the coverage of the predictor. AVPP

uses a dynamic algorithm that predicts the address of the current and future instances of the load

instruction with the goal of increasing coverage and hiding the memory latency. Second, DLVP

uses a prediction mechanism that relies on issuing a memory request to the L1 cache (placed far

away from the front-end) and retrieve the value back to the value table before the current load

instruction is issued. The authors assume very low latencies that could not be implementable in

other architectures (e.g., a latency of 2 cycles to access L1 data cache), like the one used in AVPP,

limiting the generality of the approach. Third, DLVP is a context-based predictor that has limited

performance when predicting back to back, in a similar way to other context-based predictors,

such as FCM (see Section 5.3). The article does not discuss this issue, which could limit the perfor-

mance of some workloads. AVPP is a high-performance predictor that takes into account this and

other issues (Section 7.4).

Prefetching Mechanisms. AVPP, although it gets most of its benefits from value prediction

(Section 7.3), it also performs prefetching into the VT to increase coverage and accuracy of value

prediction.

Prefetching is one of the most effective techniques to reduce the effective load access time [5,

13]. Some proposals focus on LLC misses [12, 32, 59], as they are a major source of pipeline stalls.

Other works prefetch into the L1 cache [31, 42, 43].

Runahead [42, 43] is a prefetching mechanism that speculatively executes independent instruc-

tions when the instruction window is full, with the goal of generating cache misses. Runahead

can achieve very accurate predictions, as it uses branch prediction information. More advanced

versions of runahead achieve better coverage [25, 26].

B-Fetch [31] is a prefetching mechanism driven by branch prediction and address prediction. B-

Fetch operates in two steps. First, B-Fetch predicts the future path of execution with a mechanism

based on branch prediction. Second, B-Fetch predicts and prefetches the effective address of the
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load instructions along the previously predicted path. B-Fetch uses the register content at earlier

branch instructions to predict the effective address.

Zhou et.al. [70] propose a recovery-free value prediction mechanism that aims to increase mem-

ory level parallelism. The mechanism speculatively breaks true data dependencies of dependent

load instructions with the sole purpose of prefetching data into L1.

Approximate Load Value Prediction. In applications that are resilient to errors, load value

prediction can be relaxed to improve performance and efficiency at the cost of potentially lower

prediction accuracy [38, 61, 68, 69]. RFVP [61, 68] predicts the requested value of the load instruc-

tions that are safe-to-approximate, and it never checks or recovers from mispredictions, thereby

avoiding pipeline flushes. The programmer, however, has to annotate the code to identify which

loads are safe-to-approximate.

Other Related Techniques. In addition to the previous alternatives to speculate on load in-

structions, dependence prediction [21, 39, 56] and memory renaming [40, 65] have been proposed.

However, it has been shown that load value prediction is, by far, the most effective of them all [10].

Address prediction is another technique that resembles AVPP. This technique is used for spec-

ulating on the address of a load during the early stages of the pipeline, with the goal of hiding the

load latency [6]. Unlike AVPP, address prediction does not break true data dependencies and has

limited performance gains.

9 CONCLUSION

Value prediction can significantly improve instruction level parallelism at the cost of introducing

additional hardware. Despite recent advances, complexity is still a barrier that prevents value pre-

diction to be widely adopted. The goal of this work is to go a step further and reduce complexity

and hardware cost while maintaining most of the performance benefits of value prediction. To

this end, we revisit load value prediction (i.e., predicting the values of only load instructions) as an

efficient alternative to predicting the values of all instructions.

We propose a new, low-cost load value predictor that leverages address predictability to achieve

high coverage and accuracy: the Address-first Value-next Predictor with Value Prefetching (AVPP).

The key idea of AVPP is to predict the load address first, which is used to index a small non-

speculative Value Table (VT) to get the predicted value next. To increase the predictor coverage,

AVPP also predicts and prefetches the load address of a future instance of the same load instruction

into the VT, which increases the VT hit rate of future load instructions. Our extensive evaluation

shows that a system with AVPP is, on average, 11.2% faster and 3.7% more energy efficient than the

baseline (outperforming all the previous state-of-the-art predictors in 16 of the 23 benchmarks we

evaluate), and its area is only 2.5% of the area of a 32KB L1 data cache. We show that both AVPP

and L1/L2 prefetchers implemented together achieve additive performance improvements.

We propose, analyze, and evaluate a taxonomy of value prediction policies based on different

design choices that can be made to implement value prediction. These policies were not formally

classified, compared or evaluated by previous works. This taxonomy will help to better define,

understand and reproduce future value prediction works.

We propose microarchitectural optimizations that make load value prediction a better approach

than value prediction for all instructions in terms of complexity: We reduce the register port

pressure and we leverage existing hardware instead of introducing specialized elements for value

prediction. Also, we reduce the size of the predictor by 90% compared to the state-of-the-art ap-

proaches that predict all instructions.

We conclude that predicting only load instructions enables the implementation of AVPP, a sim-

ple, low-cost and high-performance value predictor that requires minimal modifications to the
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architecture of existing processors. AVPP addresses the key challenges against enabling wide adop-

tion of value prediction in current processors.
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