
�

�

�

�

�

�

�

�

c© The British Computer Society 2016. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxw010

Asymmetric Allocation in a Shared
Flexible Signature Module for Multicore

Processors

Lois Orosa1∗, Javier D. Bruguera2 and Elisardo Antelo3

1Institute of Computing, University of Campinas, Campinas, Brazil
2ARM, Cambridge, UK

3Department of Electronics and Computer Science, University of Santiago de Compostela,
Santiago de Compostela, Spain

∗Corresponding author: lois.orosa@ic.unicamp.br

Hardware signatures based on Bloom filters are used to support and accelerate membership query
in a set of items. They use modest hardware at the cost of false positives, but never produce false
negatives. Signatures were traditionally used in different distributed and network applications, but in
recent years their use has been extended to other fields (for instance, support for manycore/multicore
parallel programming, such as data race detection, deterministic replay or transactional memory
(TM)). One drawback of signatures is that they have a fixed size, and what is a good signature size
for one application, may be not appropriate for another. Recently, we proposed a shared hardware
module for managing signatures based on a collection of Bloom filters. It has the characteristic of
hosting a variable number of signatures that change their size in runtime to adapt to the demand
of the applications. However, the assignment of resources follows a single symmetric policy for all
allocations leading to a module with a limited adaptability to the workloads. In this paper, we explore
new techniques to allocate signatures in an asymmetric way in this module, with the aim of optimizing
the resources and reducing even more the number of false positives. We explore several asymmetric
strategies and their efficient hardware implementation, and we show specific examples using TM as a
driver application. The results show that these strategies lead to a significant reduction in the number

of false positives compared with symmetric policies.

Keywords: signatures; Bloom filters; multithreaded applications; multicore architectures

Received 31 March 2015; revised 29 November 2015
Handling editor: Alan Marshall

1. INTRODUCTION

Bloom filters [1] are a probabilistic data structure for member-
ship query that are space-efficient at the cost of producing false
positives (but never false negatives), and its design space intro-
duces a trade-off between the false positive rate and the filter
complexity. The information stored in the Bloom filter is a sig-
nature of a group of data items, and it is used for membership
query in this set when the application tolerates false positives.
Subsequent variants of Bloom filters appeared to cover the needs
of new applications, some of them can even report false neg-
atives [2–5], but in this paper we refer to this standard defini-
tion. Bloom filters are widely used for distributed and network
applications such as caching, database applications, peer to peer

systems, routing and forwarding, and monitoring and measure-
ment [6], and other applications in the fields of bioinformatics,
big data and hardware support for multicore/manycore parallel
programming [7]. A simple query in Google Scholar reveals and
increasing variety of applications for Bloom filters.

Traditionally, the implementations for handling signatures
with Bloom filters are done by software using the resources of
a general purpose microprocessor. However, in recent years
there have been several proposals for a dedicated hardware
implementation, that we call hardware signatures. Specific
implementations of hardware signature support for multi-
core/manycore parallel programming and hardware accelera-
tion of other applications include among others: transactional

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

Advance Access publication on 17 March 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

L. Orosa et al.

memory (TM) [8–12], data race detection and optimization
[13, 14], efficient and safe shared memory execution [15] string
matching [16], error detection and correction [17, 18], virus
scanning [19], longest prefix matching [20], semantic informa-
tion filtering [21], word matching for sequence analysis [22],
intelligent DRAM refresh [23], energy-efficient processors for
sensor networks [24] etc.

Multicore/manycore processors are the new driver of perfor-
mance scaling by industry and a topic of intense research by
academia. The energy and power wall is demanding energy-
efficient hardware accelerator modules to support efficiently
important sets of applications. Energy-efficient hardware accel-
erators may reduce energy and power by up to two orders of
magnitude compared with general purpose hardware [25]. In
this work, we argue that Bloom filters are a excellent candi-
date for a hardware accelerator module in multicore/manycore
processors. Many applications in different fields that require
probabilistic membership queries over large data items (toler-
ating certain false positive rate) could take advantage of this
specific hardware for improving performance while reducing
energy and power.

For accelerators to be useful, they must be flexible and adapt-
able to the workloads requirements. One important issue with
hardware signatures is the correlation of the false positive rate
with the size of the signature, the number of items inserted and
the nature and statistical distribution of the items and queries.
False positives might be tolerated by an application, but may
lead to performance degradations if the false positive rate is too
high. Therefore, a fixed static dimensioning of the hardware sig-
natures for different applications may not be efficient. Following
this line, in a recent work we proposed FlexSig (Flexible Sig-
natures) [26], our first approach for a shared hardware signa-
ture module. FlexSig is a module that is able to host a variable
number of signatures of variable size with an efficient and flexi-
ble use of the available hardware resources. FlexSig uses all the
resources available for the allocated signatures when it is pos-
sible. The scheme resembles the concept of a shared last level
cache for multiple cores. This flexibility allows to obtain fewer
false positives in many applications and to adapt to applications
and inputs of different characteristics.

A severe drawback of FlexSig is that it uses the same alloca-
tion policy for all the requested signatures (no priorities), which
obviates that, in general, applications may have asymmetric
characteristics (some require more resources than others). By
analyzing these characteristics, and providing the appropriate
allocation algorithm, it is possible to optimize the performance
of FlexSig. This is in line with the fact that hardware accel-
erators should have enough flexibility to be used efficiently
by a wide range of different applications. Another important
drawback of FlexSig is that the allocation algorithm proposed
in [26] might be slow for a high throughput system.

In this work, we go a step further for providing a flexible
hardware signature module that incorporates policies of allo-
cation based on priorities: FlexSigP. Specifically, we explore

new asymmetric allocation algorithms and their efficient high
throughput hardware implementation to reduce further the
number of false positives by exploiting the asymmetry present
in software applications. The driver application for testing our
hardware proposal is TM [27–30]. Hardware TM is already
included in restricted form in widely used Intel platforms [30]
and a relevant hybrid (combined software and hardware) TM
system for this platform has been recently proposed using
software Bloom filters [31]. On the other hand, FlexSigP is
a hardware accelerator that could be used for other applica-
tions as well by simply defining the appropriate ISA interface.
FlexSigP achieves important reductions of false positives
compared with FlexSig and conventional static hardware sig-
natures. This reduction in the number of false positives may
have a direct impact on the performance of the applications.

The rest of the paper is organized as follows. In Section 2,
hardware signatures are briefly introduced. In Section 3, we
review our previous work on FlexSig. Section 4 presents our
new work on asymmetric allocation algorithms. Section 5 dis-
cusses an efficient hardware implementation. Related system
issues are discussed in Section 6. We evaluate our work in
Section 7 in the context of TM workloads, review related works
in Section 8 and finally, Section 9 is devoted to the conclusions.

2. HARDWARE SIGNATURES

Without loss of generality, we discuss hardware signatures in the
context of data items corresponding to memory addresses. Hard-
ware signatures store an unbounded number of addresses in a
bounded space. The most common type of signatures are Bloom
signatures (implemented with Bloom filters [1]), which are com-
posed of one or more hash operations (that encode the addresses)
and one or more registers to store or check the bit positions that
result from the hash operations. Although many variations of the
basic Bloom filter have been proposed (Counting Bloom filter,
Bloomier filters, etc, see [6] for an extended list), in this work we
concentrate in the standard Bloom filter. However, the proposed
module can be extended to other variations of Bloom filters, this
requiring more research in order to design a reconfigurable hard-
ware to support these variations.

There are two main operations in hardware signatures: to
insert an address, and to check for membership. Since the stor-
age space is limited, storing a high number of addresses in the
signature increases the probability of aliasing. This affects the
check operations, since the higher the aliasing, the higher
the probability of reporting a false positive. On the other hand,
signatures never report false negatives, that is, a negative result
in the check operation is always correct. The main figure of
merit of a signature is the false positive rate. There is a trade-off
between the false positive rate, the size of the signature and
the number of addresses inserted. As an instance, for a false
positive rate of 1%, and n inserted addresses, a lower bound in
the signature size required (m) is given by m ≈ 9.6n bits.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1454

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

Asymmetric Allocation in a Shared Flexible Signature Module

h1 h2

Address

hk
. . .

. . .. . .0 001 . . . 0 1 . . . 00 1

m/k bits

FIGURE 1. Implementation of a PBF.

There are two basic implementations of signatures based on
standard Bloom filters. True Bloom signatures (implemented
with single Bloom filters [1]) are composed of one multi-
ported m-bit register, and by a set of k hash functions. Parallel
Bloom signatures (implemented with parallel Bloom filters
(PBFs) [12, 32]) are composed of a set of single-ported reg-
isters, and with one hash operation per register. PBFs achieve
a false positive rate similar to True Bloom signatures, but are
simpler to implement since costly multi-ported registers are
avoided.

FlexSigP is based on PBFs. Figure 1 shows a generic PBF,
composed of k hash–register pairs. The total effective size of the
signature is m bits. Each hash–register pair can be seen as a sin-
gle independent m/k-bit Bloom filter.

To insert an address in a PBF, each hash encodes the address,
resulting in a specific bit position set to one in the register. To
check for ownership, the hash encodes the address and checks if
all the corresponding bits (the bit positions indicated by the hash
operations) in the register are set.

3. FLEXIBLE HARDWARE SIGNATURES

FlexSig [26] is a new shared hardware signature module
designed to make hardware signatures more flexible. The goal
is to provide a shared resource for the threads in a multicore
processor to make an efficient use of signatures as a support-
ing building block for parallel multicore applications. FlexSig
allocates all the available resources dynamically, resulting of
signatures of variable size.

FlexSig is based on PBFs, with a module composed of a set
of True Bloom filters (BF) each one with one hash–register pair
and an identifier that associates it with a signature. Therefore,
FlexSig configures signatures of different sizes by grouping BFs
with the same identifier.

FlexSig tries to use all the resources in the module to allocate
the required number of signatures dynamically. The flexibility is
achieved by reducing the size of the signatures dynamically if a
new signature allocation request arrives. FlexSig frees BFs from
signatures without concerns about correctness (false negatives

are not produced), since reducing the size of a signature only
affects the false positive rate. On the other hand, when FlexSig
deallocates a signature and frees the corresponding BFs, these
are not added to the remaining signatures due to the complexity
involved.

In FlexSig, the symmetric allocation algorithm tries to assign
the same number of BFs to all the signatures allocated in the
module. The allocation policy proposed is very simple but
slow. The controller computes the maximum number of BFs
per signature, and then frees BFs in a round-robin fashion until
the number of free BFs is equal to the maximum number of BFs
per signature. This sequential process is done by a finite state
machine and requires a variable (a potentially high) number
of cycles. For a system with frequent allocations this results
in a performance bottleneck. In this work, we propose a new
high throughput allocation algorithm, extended to include also
priorities, that is suitable for frequent allocations.

4. ASYMMETRIC ALLOCATION POLICIES

In this work, we propose FlexSigP, a module with new asym-
metric allocation algorithms with a set of priorities to take
advantage of asymmetric characteristics in applications or
among applications. With an asymmetric strategy the controller
assigns signatures with a different number of BFs depending on
the priority. As we show in Section 7, the asymmetric policies
lead to a significant reduction in the number of false positives
compared with FlexSig.

The design space of FlexSigP is very wide and severely
affects the hardware complexity of the allocator. Some of the
parameters to consider are: number of states for a priority class,
support for several orthogonal priority classes, variable or fixed
ratio of resources in a priority class etc. After an exploration
of the design space, we decided to use two orthogonal prior-
ity classes (signatures are allocated based on two independent
priorities in a two level process), and each one with only two
possible states: high priority and low priority. As we show in
Section 5 these design decisions lead to a reasonable complex-
ity increase in the allocator compared with the case without
priorities, and it allows a significant reduction in the number of
false positives (see Section 7). As we already achieve a good
trade-off between complexity and performance, we do not
consider more involved priority schemes which lead to very
complex allocators.

4.1. High-level asymmetric allocation algorithm with two
priority classes

In this section, we describe the high-level allocation algorithm
with two orthogonal priority classes. Table 1 shows a sum-
mary of all the terms that we will use in our explanations. An
agent (typically a thread) issues a request to allocate signatures.
The outer priority class (PCOUT) determines the total number

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1455

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

L. Orosa et al.

TABLE 1. Summary of terms used in Section 4.

Name Description

FlexSig Symmetric signature module
FlexSigP FlexSig with priorities (asymmetric)
PCOUT outer priority class
PCIN Inner priority class
PH Value coding the high priority
PL Value coding the low priority
S Ratio of resources assigned
NL() Maximum number of BFs for a low-priority

agent/signature
NH () Maximum number of BFs for a high-priority

agent/signature
Q Maximum number of BFs to be distributed
αH Number of agents/signatures of high priority
αL Number of agents/signatures of low priority
AS Total number of signatures per agent
T Total number of Bloom filters
F Total number of agents

of BFs assigned to the agent. Regarding the PCOUT priority
class, agents are assigned a high or low priority, and there can
be any number of agents of different priority levels. The inner
priority class (PCIN) is used to distribute the BFs assigned to
the agent among its internal signatures (again with high or low
priority).

Figure 2 shows a graphical example that illustrates PCIN and
PCOUT. The PCOUT associates 6 BFs to the Agent1 (low pri-
ority), and 10 BFs to the Agent2 (high priority). The PCIN asso-
ciates 3 BFs to Sig1 and 3 BFs to Sig2 (the priorities are the
same, symmetric allocation) in Agent1, and 2BFs to Sig1 (low
priority) and 8BFs to Sig2 (high priority) in Agent2.

We code the priority levels and the ratio of resources as fol-
lows. Let PH (PL) the value coding the high priority (low prior-
ity). The ratio of resources assigned, S, is given by

S = PH

PL
(1)

In what follows, we indicate the priority class by adding the
subscript ‘o’ for the PCOUT class and ‘i’ for the PCIN class
to S, PH , PL and other variables defined below. In the example
of Fig. 2, So = 10/6, Si = 3/3 for Agent1 and Si = 8/2 for
Agent2.

In an incoming allocation request, FlexSigP tries to dis-
tribute the BFs according to the different priorities and the
corresponding ratios of resources (So and Si). The pro-
cess of allocating BFs to agents and to signatures for one
agent is very similar: in both cases, the number of BFs
needs to be readjusted in terms of the maximum number of
resources available, the number of agents/signatures and their
priorities.

The general expression for computing the maximum number
of BFs for a low-priority agent/signature is

NL(Q) =
⌊

Q

αH × S + αL

⌋
(2)

where Q is the maximum number of BFs to be distributed, and
αH , αL are the total number of agents/signatures of high and low
priority, respectively. The maximum number of BFs for a high-
priority agent/signature is obtained from NL as follows:

NH (Q) = �NL(Q) × S� (3)

with Q = T when the calculation is for agents (T is the total
number of BFs in the FlexSigP module). The allocation algo-
rithm requires the computation of the corresponding values for
agents of high and low priority, and for signatures of agents
of high and low priority, resulting in the following values:
NHo, NLo for agents, and NHi, NLi for signatures of agents. For
computing NHi and NLi in expressions (2) and (3), Q should
take the value NHo or NLo depending on the PCOUT priority
of the agent. Therefore, a total of four values result: NLi(NLo),
NHi(NLo) for signatures of low PCOUT priority agents, and
NLi(NHo), NHi(NHo) for signatures of high PCOUT priority
agents.

In the example of Fig. 2, in case a new incoming high-
priority Sig3 request in Agent2, the new values for the
maximum number of BFs for each signature, according to
general expression would be NL(10) = � 10

2×(4/1)+1� = 1 and
NH (10) = �NL(10) × 4/1� = 4.

Restrictions. even at this high level, some restrictions should
be applied in order to obtain a practical efficient hardware imple-
mentation. Namely:

(i) To simplify the allocation algorithm we consider the
number of signatures per agent (AS = αHi + αLi) a
constant of the system. This restriction simplifies sig-
nificantly the allocator (allow a single set of compu-
tations valid for all agents), while other parts of the
system (hardware/software) can mitigate its effects.
For instance if one agent needs more signatures, this
can be done in several successive allocations.

(ii) The total number of agents F = (αHo + αLo) is
bounded so that F × AS ≤ T (to have a lower
bound of one BF per signature). This is solved by
dimensioning the FlexSigP module according to the
maximum number of threads supported.

(iii) S is also bounded to assure a minimum of one
BF per signature. The bound for So is obtained
from Equation (2), using Q = T and with the
condition NLo(T) ≥ AS (one BF for AS signa-
tures for the low-priority agents). This results in
the condition So ≤ 1 + [(T/AS) − F]/αHo. The
bound for Si is obtained also from Equation (2),
using Q = NLo (computed with the actual value

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1456

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

Asymmetric Allocation in a Shared Flexible Signature Module

FIGURE 2. Example of PCOUT and PCIN. The PCOUT is regarding agents (low-priority Agent1 and high-priority Agent2) and the PCIN is
regarding the signatures of each agent (Sig1 and Sig2 for each agent). In Agent1, both high and low priorities are the same, whereas in Agent2 Sig1
is low priority and Sig2 is high priority.

used for So) and with the condition NLi(NLo) ≥ 1
(at least one BF for the low-priority signature of the
low-priority agents). This results in the condition
Si ≤ 1 + (NLo − AS)/αHi.

As in the symmetric case, a very accurate allocation algo-
rithm leads to a very complex implementation that has a
negligible improvement of performance compared with our
implemented policy, which we explain below.

Algorithm 1 shows a high-level description of the allocation
algorithm proposed. Our goal is to have a highly parallel imple-
mentation with distributed actions at the BF level (no centralized
control).

For each signature, the order index of each BF is stored (Nx

in BF number x of the FlexSigP module). The allocation starts
with the computation of NLo, NHo, NLi(NLo), NHi(NLo) (used
for signatures of low PCOUT priority agents), and NLi(NHo),
NHi(NHo) (used for signatures of high PCOUT priority agents)
as described before. Then the allocation is performed in a recur-
sive process with two phases. The process is repeated for each
signature for the requesting agent, starting from high-PCIN
priority signatures. The idea is to repeat a process consisting
in freeing resources and allocating them to each new sig-
nature. Specifically, in Phase I, BFs are freed so that each
signature already allocated in the module keeps NLi (in fact
NLi(NLo) or NLi(NHo)) or NHi (in fact NHi(NLo) or NHi(NHo))
BFs depending on its PCIN and PCOUT priority (those BFs
with Nx value—order index inside the signature—greater than
NLi or NHi are freed). In Phase II, the free BFs (those freed in
Phase I and, for the first signature allocation, other BFs that
were free because of previous deallocations) are allocated to
the corresponding signature of the requesting agent, and new
order index Nx values are generated for the BFs allocated to the
signature.

The algorithm requires AS sequential steps, but the decisions
to free or allocate are at the BF level and are done in parallel in
all the BFs. This algorithm may favor the requesting agent, but
this advantage is lost in the next allocation. Moreover, regarding
the distribution of resources assigned to each agent, the policy

Algorithm 1 FlexSigP allocation.

Nx: order index in a signature of BF x.
Compute NLo, NHo.
Compute NLi (NLi(NLo) and NLi(NHo)).
Compute NHi (NHi(NLo) and NHi(NHo)).
for(i = 1 to AS) {

/* For each signature of requesting agent */
/* high PCIN priority first */
Phase I:

for each BF in the system {
if low PCIN priority signature: free BF if (Nx > NLi)
if high PCIN priority signature: free BF if (Nx > NHi)

}
Phase II:

allocate all free BFs to signature
generate order index Nx for each allocated BF

}

favors the last low-priority signature allocated, assuring a lower
bound of resources allocated to it of at least one BF. An ‘ideal’
policy would assign NLi or NHi BFs to each signature, including
those of the requesting agent, and some additional BFs (due to a
nonzero remainder in the integer divisions) to some signatures
(candidate signatures would be only those with the number of
BFs greater than NLi or NHi before the current allocation, and
including the signatures of the requesting agent). However, the
implementation of the ‘ideal’ policy is very complex, while we
verified with our simulation framework that the results are very
close to the actual implemented policy (within 2%).

4.2. Example: asymmetric algorithms applied to TM

It is illustrative to show how an specific application may take
advantage of the asymmetric policies provided by the pro-
posed scheme. Specifically, we use TM as a driver application
for benchmarking FlexSigP. To scale in performance in the
multicore/manycore era, applications need to be programmed
for parallel processing. A parallel application running in a

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1457

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

L. Orosa et al.

3

(a) (b)

FIGURE 3. Speed up vs. reduction of false positives (a) and signature size (b).

multicore/manycore processor (several concurrent threads run-
ning in different cores) usually synchronizes through shared
memory, so that specific mechanisms are necessary to do it
reliably and efficiently. Locks are a traditional synchronization
mechanism, but it is well known that they may lead to several
problems such as deadlocks or priority inversion. Also, because
locks use fine grain synchronization, programming and debug-
ging are difficult, leading to low productivity and reliability
issues [33, 34].

TM introduces coarse grain synchronization for easy pro-
gramming and achieve performance with speculation and
certain hardware support. Specifically, TM defines transac-
tions as atomic sections of code that execute concurrently,
in isolation and in a speculative way. TM can be imple-
mented in software [35], but many proposals use hardware
support [8, 27, 31] for performance reasons. Microprocessor
vendors are already including certain hardware support for TM
in their technology roadmaps [28–30], and further hardware
support is expect in future generations.

There are several ways to take advantage of the characteris-
tics of a TM system with a specific transactional code. Many TM
systems use a read and a write signature to collect the read and
the write sets of the transactions [12, 36]. Therefore, in a TM sys-
tem the agents are the transactions which need to allocate two
signatures (AS = 2), one for the read set, and one for the write
set of the transaction. These signatures are used to detect atom-
icity violations of the transaction by other concurrent transac-
tions. We may use each of the two levels of priority described
in Section 4.1 to exploit the asymmetries between transactions
and between the read and the write set signatures. The algorithm
could be simplified by using one unified signature [12] for both
read and write set, but we choose to use two conventional signa-
tures to simulate a more complex scenario.

Benchmark programs show that there is a significant vari-
ability in the relative sizes of the read and write sets. In many

occasions the read set is bigger than the write set, but some-
times they are similar, or even the write set is the bigger. The
characteristics of the read and write set totally depend on the
benchmark. Therefore, the false positive rate also depends on
the characteristics of the read and write set. Thus, it would be
of interest to adapt the sizes of the read or write signatures to
optimize the overall false positive rate. To explore read/write
asymmetry, the PCIN priority class is used.

On the other hand, benchmark programs have transactions
with very different characteristics regarding the total size of
the read/write sets and their access patterns. To take advantage
of this, the allocation algorithm assigns resources based on
the identifiers of the transactions using the PCOUT priority
class. Thus, there is a set of more demanding transactions (that
require bigger signatures to achieve a reasonable false positive
rate), that are marked as high-priority transactions, and others
that are more lightweight, and that are marked as low-priority
transactions. The controller distributes the resources asym-
metrically among transactions based on priorities, and may
distribute resources with priorities between read and write
signatures (using the PCIN priority class).

Our goal is to evaluate the reduction in the number of false
positives by using FlexSigP. The number of false positives
might be directly related with performance [37], since a false
positive leads to an unnecessary conflict, and therefore one
of the conflicting transactions has to stall or rollback and
restart, with the consequent inefficiency. A certain reduction
in the number of false positives implies a reduction in the
penalties due to stall or rollback and restart. Of course, the
overall effect on performance depends on the false positive
rate in the application and the amount of transactional work
performed.

To illustrate how the number of false positives affect per-
formance, Fig. 3a shows the speedup for some instances of
the STAMP benchmarks [38] (used for the evaluation of TM

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1458

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

Asymmetric Allocation in a Shared Flexible Signature Module

systems) in terms of the reduction in the number of false posi-
tives. The data were collected from [39], where the reductions
in the number of false positives were achieved by doubling the
signature sizes from 64 bits up to 8K bits and simulating a hard-
ware TM system [8]. Note that for some benchmarks even a
20% reduction from the base case, allows a significant speedup.
Reductions of more than 80 % allows speedups of more than 2
for all the benchmarks considered, reaching speedups of more
than 7 for some cases.

Another possibility in the context of TM is to share the
FlexSigP module for different TM applications. Specifically,
Fig. 3b shows the speedup variation with the signature size
using the same source data as Fig. 3a. The behavior is highly
dependent on the benchmark, leading to the possibility of
improving results in a shared signature module by using pri-
orities. For instance for a total of 9K bits and the benchmarks
‘Yada’ and ‘Intruder’ sharing the signature module, a symmet-
ric policy would assign 4.5K bits to each. However, a better
policy would be to assign 1K bit to ‘Intruder’ and 8K bits to
‘Yada’. The priorities in FlexSigP can be used to achieve this
kind of asymmetric distribution of resources. Note that in some
situations, increasing the signature size reduces the speedup.
This is due to some performance pathologies in TM applica-
tions, where some false positives may in fact prevent later more
costly aborts.

Finally, to provide an intuitive view of the different possibil-
ities in the context of TM applications, Fig. 4 shows a graph-
ical example for a centralized signature module composed of
T = 16 BFs, with a maximum of eight concurrent transactions,
and for the case of three consecutive allocation requests. In each
allocation, the agents allocate one read signature (marked with
a ‘r’ in the figures) and one write signature (marked with a ‘w’).
We assume that BFs inside a signature are numbered from left to
right in the module shown in the figures.

Figure 4a shows the statically fixed allocation of BFs, were
one BF is allocated per signature. After the three agent allo-
cations only 6 BFs are used of the 16 available. Figure 4b
shows the case of an allocation in a FlexSig module. All the
resources are used from the first request, and the resources are
distributed with no priorities (the differences in the number of
BFs are due to the integer arithmetic calculations). Figure 4c–e
shows the examples of allocations with priorities in FlexSigP
(the priorities in each case are indicated in the captions of the
figures; see [40] for the details of the calculations performed).

4.3. Priority assignment

The optimal priority values change depending on the applica-
tion, and to assign priorities to agents and signatures precisely is
not trivial. There are several ways to deal with the problem.

The first way is to infer the priorities dynamically at runtime,
adapting the priorities with an adaptive algorithm. The big prob-
lem of doing so is that we do not have enough information for
adapting the priorities precisely: at runtime it is easy to know

FIGURE 4. Examples of allocation algorithms. (a) Example of a
statically fixed allocation of Bloom filters; (b) Example of the sym-
metric allocation algorithm in FlexSig; (c) Example of an asymmetric
allocation algorithm with Si = 2 (write signature of low-PCIN prior-
ity), So = 1 (no PCOUT); (d) Example of an asymmetric allocation
algorithm with So = 2, Si = 1 (no PCIN) and with transactions ID1
and ID2 of low priority, and ID3 of high priority); (e) Example of
an asymmetric allocation algorithm with So = 2 and Si = 3 (ID1 of
high PCOUT priority, ID2 and ID3 of low PCOUT priority; write
signature of low-PCIN priority).

when a conflict is produced (in the TM context), but it is not pos-
sible to know if such a conflict is a real conflict or a false positive,
and therefore it is not possible to adapt the priorities depending
on the false positive rate.

An alternative would be to detect when a signature reaches a
certain filling rate, but this would require a significant hardware
overhead, without assuring good results, since the priori-
ties would in fact depend on the ratio of filling rates of the

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1459

(a)

(b)

(c)

(d)

(e)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

L. Orosa et al.

competing transactions, and the set of competing transactions
may change during the application abruptly.

Another approximate alternative for long-term runs is to
monitor the performance of the application with different
parameters in the initial states of the execution, choose the
best ones and maintain them for the whole execution of the
program. For example, in a TM system, if a piece of code that
contain transactions is repeated continuously during the whole
execution of the program, in the initial states we could execute
this peace of code with different parameters, and choose the
best combination (based in the conflict rate). In our evaluation
we choose our parameters following this philosophy: we try
several parameters and we choose the best ones.

The second way to deal with the problem is statically, at com-
pilation time. With static analysis we could estimate the aver-
age size of the transactions write and read set, and we could use
this information to get a estimation of the priorities. However,
there is information that is hardly inferable statically, such as the
interference between transactions or even the size of the transac-
tion (that may depend on the control flow). Moreover, based on
our experience, the best priority assignment do not correspond
always to the ratio of work set sizes.

Therefore, a practical, efficient and precise algorithm for
assigning priorities probably would have to be a mix between
static and dynamic techniques. Overall the problem requires
a deep research to get a general solution, which is devoted for
future work. On the other hand, for our specific implementation
of priorities indicated by a three bit value, it required a man-
ageable effort to detect good solutions by profiling the number
of false positives in a set of runs.

5. HARDWARE IMPLEMENTATION FOR TM

This section describes the hardware implementation of the
FlexSigP in the context of a TM system. We propose a hard-
ware implementation for asymmetric allocation algorithms
using read and write signatures. Despite the fact that this
instance implementation is specifically designed for a TM
system, it can be easily extended to other applications.

We assume a single transaction request to allocate the write
and read signature. The hardware proposed implements the two
classes of priorities described in Section 4.1. Symmetric alloca-
tions are performed by just setting the corresponding priorities
Si or So to one. Our implementation aims to provide a highly par-
allel low latency allocation operation in order to maximize the
throughput of the accelerator.

We also assume that the priorities (PHi, PLi, PHo and PLo)
are known before execution. The calculation of the best match
for each benchmark can be estimated by previous training
executions, by static analysis (in the compiler) or a mix of
both. The automatic static or dynamic calculation of the
priorities is not straightforward, and it is a topic for future
research.

5.1. Basic elements

Figure 5 shows the basic elements and signals of a superscalar
FlexSigP module that can issue two instructions in parallel. The
controller can be adapted to manage a greater number of parallel
instructions at the expense of increasing complexity.

There are two requests managed by the controller in parallel
(indicated as request in the figure), each one composed of the
code of the instruction (instr), an address (address—used only
in insert and check operations), the identifier of the transac-
tion (inID), the identifier of the signature (inSET—used only
in insert and check operations) and the allocation parameters
(alloc_param—used only in allocation operations). The allo-
cation parameters include PHi, PLi, and the flags pHSig (equal
to one for read signature of high priority), and pOUT (equal to
one for a high-priority transaction).

The controller has several simple elements that are replicated
for each BF to achieve maximum parallelism:

(i) Bloom_filterx: it is a storage element composed of a
register and a hash function.

(ii) inx: input port for the address in the insert and check
operations.

(iii) outx: one bit output port for the result of the check oper-
ation.

(iv) IDx: register to store the identifier of the transaction to
which the Bloom_filterx is allocated.

(v) SETx: register of one bit to identify a read (SETx = 1) or
write (SETx = 0) signature.

(vi) Pix: one bit register that indicates that a BF is part of
a high-priority signature or a low-priority signature
(PCIN priority).

(vii) Pox: one bit register that indicates that the BF is part of
a high-priority transaction or a low-priority transaction
(PCOUT priority).

(viii) Nx: register that stores the order index of the BF in the
signature. For each signature, all the BFs are numbered
from one to the total number of BFs in the signature, in
consecutive and ascendant order.

(ix) control logicx: is a simple per BF control logic that
performs the Check, Insert, Allocate and Deallocate
operations by generating the required control signals
(see Section 5.3).

There are also several signals in each BF that are activated by the
control logicx controller:

(i) reqx: this signal is used to control input and output mul-
tiplexers for each BF.

(ii) clearx: this signal is used for the allocating and deallo-
cating request to clear the corresponding BF.

(iii) checkx: is an enabling signal for reading the output of
the BF.

(iv) insertx: synchronous load signal for the BF.

Furthermore, the controller has an arithmetic calculations mod-
ule that calculates the maximum number of BFs per signature

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1460

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

Asymmetric Allocation in a Shared Flexible Signature Module

FIGURE 5. The basic FlexSigP elements in a two-way implementation (issue of up to two instructions).

(a) (b)

FIGURE 6. Arithmetic calculations for the allocation operation. (a) Calculation of the maximum number of BFs for high- and low-priority
transactions and (b) Calculation of the maximum number of BFs per signature, depending on its priority and the priority of the transaction.

according to their priorities. These values are required by all
the per BF control logic in each allocation request. Below, we
describe this module in detail.

5.2. Allocation algorithm implementation:
arithmetic calculations

In this subsection we show the implementation of the arithmetic
part of the allocation algorithm. We present an implementation
for specific values of some parameters in order to fully con-
sider all possible optimizations. The extension to other values
requires the redesign of some parts in order to optimize them
for the specific parameters. Specifically, we present the design
for T = 64 (total number of BFs in FlexSigP), and priorities

defined by three bits (PH and PL are three bit numbers for both
the PCIN and PCOUT priorities).

The calculations necessary to perform the allocation are
described by Equations (2) and (3). In order to reduce hardware
complexity, and since our allocation algorithm is in fact heuris-
tic, we designed the arithmetic units so that an error of one unit
is allowed with respect to the exact arithmetic implementation
of these equations. These errors have a negligible effect in
the final results (verified with our simulation framework), but
allow a significant hardware reduction.

Figure 6a shows the calculation of NLo (Equation (2)) and
NHo (Equation (3)). The divisor in Equation (2) is computed
by a multiply–add operation. Since So is a constant during
the execution of the application, we assume that this value is

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1461

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

L. Orosa et al.

FIGURE 7. Control logic for each Bloom filter for allocations.

provided or computed elsewhere. At this point, according to
Equation (2) a division operation is performed. The implemen-
tation of the division operation is simplified because: (i) the
dividend is a constant of the system (Q = T); (ii) the output is
a six bit integer number (the range is from 1 to T , with T = 64
in our implementation) and (iii) we allow an error of one unit
with respect to the exact arithmetic calculation. This allowed
us to use a look-up table to implement the division (due to the
reduced number of bits of the input).

Figure 6a shows the number of bits (integer + fractional)
required at the input/output of each module. As we show in the
figure only the leading five bits of the denominator are neces-
sary at the input of the divisor unit (look-up table), therefore the
result of the previous adder is normalized and truncated to five
bits. The normalization is compensated at the output with the
shift operation. To calculate NHo (also in Fig. 6a), the output
of the divisor (OUT_1 in the figure) is multiplied by So, and
finally the result is shifted.

In Fig. 6b we show the calculation of the pair (NLi(NLo),
NHi(NLo)) for low PCOUT priority signatures, and the pair
(NLi(NHo), NHi(NHo)) for high PCOUT priority signatures. We
rearranged the computation of Equations (2–3) to allow a more
efficient computation due to: (i) αHi = αLi = 1 (the number of
signatures allocated is equal to two), (ii) Si may have a different
value in each allocation.

A look-up table is used to compute the result of
PHi/(PHi + PLi) = Si/(Si + 1). The output of the look-up
table is a number in the interval (0,1), with four fractional bits.
This value is multiplied by NHo and NLo to obtain the maxi-
mum resources of the high-priority signature. The maximum
resources of a low-priority signature are the remaining number
of BFs, computed by means of a subtraction operation.

5.3. Control logic

In this section, we describe the control logic that generates
local signals for each BF in Fig. 5. To simplify the presentation
we show the more complex part, corresponding to the logic
for controlling the allocation operations. Figure 7 shows the
control logic in each BF to implement the allocation operation.
It corresponds to a straightforward hardware implementation
of the allocation algorithm shown in Algorithm 1.

A 4:1 multiplexer and a comparator implement the compar-
isons required in the Phase I of the loop body of the algorithm
(signal a corresponds to the result of the comparison). The Nx

value is stored in a six bit flip–flop, and indicates the order
index of BF x in a signature. A very simple state machine con-
trols the execution with inputs a (output of comparator) and AL
(a signal that indicates the starting of an allocation operation
by a transition from 0 to 1). The output of the state machine is

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1462

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

Asymmetric Allocation in a Shared Flexible Signature Module

a single signal b that controls the actions corresponding to the
Phase II of the loop body of the algorithm: a signal to clear the
storage elements of the signature, a load signal for the regis-
ters that store state information (IDx, SETx, Pix and Pox), a
load signal for the register that stores Nx and a signal used to
recompute the order index in the signature.

To compute the Nx values (Phase II of the algorithm), a
shared parallel prefix population count compressor tree is used.
This unit computes the prefix addition of all the values of the
b signal (0 or 1) of all BFs in the module. For instance for 8
BFs (BF0 at the right and BF7 at the left) and the sequence of b
values 10 011 001, the result would be 43 332 111. The values
computed are stored in the Nx register only for BFs with b = 1,
resulting in N0 = 1, N3 = 2, N4 = 3 and N7 = 4.

The state machine has three states: P0, P1 and P2. P0 indicates
that no allocation actions are performed, P1 corresponds to the
allocation actions for the high-PCIN priority signature and P2
corresponds to the allocation actions of the low PCIN priority
signature. The transition from P0 to P1 is triggered by a tran-
sition of the AL signal that indicates the starting of an alloca-
tion. The transition from P1 to P2 is done only for BFs with Nx

values greater than the corresponding control value. The transi-
tion from P1 to P0 is performed in BFs with Nx values less or
equal the corresponding control value (so no further allocation
actions are performed on them). The transition from P2 to P0
is performed unconditionally after all the allocation actions are
finished.

5.4. Hardware cost and latency

In this subsection, we use a high-level rough model to evaluate
the hardware cost and latency of the proposed scheme. Although
real implementations rely on optimizations done by synthesis
tools on a specific standard cell library technology, this high-
level analysis may give some insight about the added complex-
ity of allocations with priorities. For the estimations we used the
instance configuration sizes described in this section (64 BFs of
64 bits each).

We use a rough area-delay model based on logical effort [41].
This model is based on using cells with transistor sizing so that
all the cells have the drive strength of the minimum size inverter.
Buffering is introduced when necessary to optimize delays. We
provide delays in FO4 units (1 FO4 is the delay of an inverter
of minimum size with a load of four inverters), and hardware
complexity in equivalent NAND-2 gate units. Interconnections
loads are not taken into account. Optimizations such as gate siz-
ing, low/high Vth etc. are not considered. Due to space limita-
tions, we only present here the main results of the evaluation.
Extended details can be found in [40].

Regarding hardware complexity, we obtained the following
results:

(i) Cost of per BF allocator with priorities: 100
NAND-2

(ii) Cost of shared parallel prefix population count: 3340
NAND-2.

(iii) Cost of arithmetic calculations: 2235 NAND-2.

This leads to a total cost of 5600 NAND-2 for the shared mod-
ules, plus 100 NAND-2 per BF. To put these numbers in con-
text, it is useful to estimate also the complexity of a single BF.
We assumed an implementation based on a single port SRAM
(with 6T cells), configured as a 8 × 8 array. The estimated com-
plexity using our rough model is of about 450 NAND-2.

We conclude that for 64 bit BFs, the allocation with priori-
ties requires about a 20% hardware overhead per BF. An upper
bound of the overhead (considering only the hardware of the
BFs and not the other supporting hardware) of the shared mod-
ules for a 64 BFs system is also ∼20%. Thus, the upper bound
overhead in the evaluated system configuration is ∼40%,
with respect to a centralized system with static allocation
of BFs.

Regarding the overhead with respect to FlexSig using the
same high throughput allocation scheme, we have to take into
account that the arithmetic calculations part is simplified to
just one look-up table, and that the per BF allocation hardware
requires a 2:1 multiplexer instead of the 4:1 multiplexer. This
results in a total overhead of ∼6% with respect to FlexSig.

However, in an actual implementation, this overhead is in fact
highly dependent on the BF size and number of BFs in the sys-
tem. Higher sizes and number of BFs reduce the overhead since
the hardware complexity of the arithmetic calculations module
and the parallel prefix population counter grows logarithmically
with the number of BFs (the overhead per BF grows slightly, just
one bit in the mux and the comparator for every doubling in the
number of BFs). For instance, in a system with 64 BFs of 1024
bits each, an upper bound of overhead would be 3% with respect
to a centralized module with static allocation.

Regarding latency, we obtained the following results:

(i) Delay of 80 FO4 for the arithmetic calculations.
(ii) Delay of 29 FO4 for the parallel prefix population count.

(iii) Delay of 40 FO4 for the per BF allocation scheme.

Regarding latency and throughput, the actual number of
cycles of latency seen by the cores is determined by the core
cycle time. For reference, we estimated a combinational delay
of the cycle time of 23 FO4 for a current core implementa-
tion (see [40] for a discussion about this issue). Taking this
value as a reference, this leads to a latency 4 core cycles for the
arithmetic calculations, and 2 core cycles for the per BF hard-
ware for allocation. Since the allocation requires two FlexSigP
cycles with operations using the same hardware, this leads to a
total of 4 + 2 + 2 = 8 core cycles for an allocation. Regarding
throughput, the arithmetic calculations can be simply pipelined
by adding registers. This is not the case for the per BF hardware
for allocation. Therefore, a new allocation can be performed
every 4 core cycles.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1463

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

L. Orosa et al.

TABLE 2. Configuration of the signatures used.

Conventional FlexSigP Benchmarks

Cf.1 32 sigs × (256 bits, k = 4) 128 BF × 64 bits intruder, vacation, yada, List, DList
Cf.2 32 sigs × (64 bits, k = 4) 128 BF × 16 bits bayes, genome, kmeans, labyrinth, ssca2,

Hash, Tree, TreeOver., Forest
Cf.3 – 128 BF × 8 bits Eigen1, Eigen2
Cf.4 (a) 256 sigs × (64 bits, k = 4)

(b) 128 sigs × (64 bits, k = 4)
(c) 64 sigs × (64 bits, k = 4)
(d) 32 sigs × (64 bits, k = 4)

(a) 1024 BF × 16 bits
(b) 512 BF × 16 bits
(c) 256 BF × 16 bits
(d) 128 BF × 16 bits

Eigen3

6. SYSTEM ISSUES

Two implementation issues at the system level are: the software
interface and the specific placement of the accelerator in the sys-
tem. Regarding the software interface, specific ISA extensions
should be provided to have a fully programmable accelerator. In
order to support a wide range of applications with an efficient
mapping to the accelerator, a careful design of the ISA exten-
sions should be done.

There are several possibilities to place the module in the chip
depending on the system, the target tool, the NOC (on-chip
interconnection network) etc. In a general case, the module
could be attached to the NOC in a similar way to other shared
accelerators. This is similar to centralized BF bank module
proposed in [10, 11] for TM applications. Depending on the
size of the accelerator (number of BFs and size of each filter),
a partitioned implementation could be considered, in a similar
way to the bank organization in a cache system, to avoid the
bottleneck of a centralized unit.

Furthermore, for dealing with high contention scenarios, our
module could increase the number of read ports, in the same way
that is done for the physical register file in OoO processors, or
some high-performance caches, to allow several simultaneous
reads to the same Bloom filters, at the cost of more hardware
resources. Another complementary alternative is to use schedul-
ing techniques [42] to mitigate contention, and aliviate the pos-
sible bottleneck in our shared module.

FlexSigP could be provided specifically to support novel
important paradigms of parallel programming in multicore/
manycore microprocessors (such as TM, data race detection
etc). For this case, in a system with a ring NOC, the FlexSigP
module could be placed at the cache controllers or directly
connected to the NOC. In case of a system with a distributed
directory cache coherence protocol, the module could be par-
titioned among directories based on address ranges, or the
system could be clustered, by assigning one or more cores
to a predefined directory. These two techniques could also
be combined. As a specific illustrative example of use in
this context, FlexSigP could be used as the conflict detection
mechanism of a TM system similar to the IBM Blue Gene

processor implementation [43] with minimum changes in the
original system.

Furthermore, an alternative implementation could couple a
FlexSigP module to each core (plus private L1 cache) to track
the addresses of the threads that share the core. For instance, in
the case of the IBM Power 8 processor [44], up to eight threads
may share a single core. In this context, our module could be
used per core by all threads of the core, just by adding a thread
id per signature in the module.

7. EVALUATION FOR A TM SYSTEM

In this section, we evaluate the asymmetric policies in FlexSigP
in the context of a TM system. Specifically, we use the infor-
mation regarding the read and write sets from some well-known
TM benchmarks for evaluating the reduction of false positives.

7.1. Experimental setup

We use RSTM [45] as TM system, and PIN [46] to instrument
the transactional code (to gather read and write sets) and to sim-
ulate hardware signatures.

For testing our scheme, we chose some widely accepted TM
benchmarks: STAMP [38] benchmarks, some micro bench-
marks included in RSTM and Eigen benchmark [47] (a simple
synthetic benchmark that can be configured to stress different
TM characteristics).

Table 2 shows the four different configurations that we use
to achieve the adequate false positive rates to compare the
improvements in all the cases. Each configuration shows the
parameters for the conventional signatures (statically allo-
cated Bloom signatures), the parameters for FlexSigP and
the benchmarks tested with that configuration. For example,
Cf.1 uses 32 signatures (16 read signatures and 16 write sig-
natures) of 256 bits and k = 4 (k is the number of hashes in
the PBF) for conventional signatures, and a FlexSigP with 128
BFs of 64 bits (the same total number of bits as conventional
signatures).

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1464

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

Asymmetric Allocation in a Shared Flexible Signature Module

FIGURE 8. Reference graph that shows the percentage of decrease of
false positives in symmetric FlexSig [26] compared with conventional
signatures. The higher the bar, the better.

All the values of the priorities (PHi and PLi), as well as the
input of the benchmarks used in this evaluation are shown in
Supplementary material [40].

7.2. Evaluation for the PCIN priority class

In this case, there is no priority for distribution of resources
among transactions, but for each transaction a priority is pro-
vided to distribute the resources for the read and write set
(PCIN priority class).

For testing this experiment, we chose STAMP [38] bench-
marks and some micro benchmarks included in RSTM. We
simulate the benchmarks using from 2 to 16 threads in a system
with 32 conventional signatures (PBFs), and in a system with a
FlexSigP module. In this experiment, we use the configurations
Cf.1 and Cf.2 shown in Table 2. Cf.1 is used for the evaluation
with the benchmarks that produce a higher rate of false posi-
tives. Cf.2 is used for the evaluation for benchmarks with lower
levels of false positives.

For reference, Figure 8 shows the percentage of reduction
on false positives of FlexSig (symmetric policies) with respect
to conventional statically allocated BFs (higher is better, and
a 100% reduction means no false positives). As we showed
in [26], there is a significant reduction in the number of false
positives (the reduction improves as the number of threads is
reduced) due to the flexibility in resource management.

Note that the results of FlexSig compared with conventional
signatures are worse when the number of threads increases. As
we show in Section 7.4, this is not due to any scalability issue.
The reason is because there are 32 conventional signatures in
the system, which are all used only during the execution with
16 threads. Therefore, with less than 16 threads, there will be
unused resources. Unlike conventional signatures, FlexSig

FIGURE 9. Percentage of decrease on false positives in FlexSigP
[26] with PCIN priority class compared with symmetric FlexSig. The
higher the bar, the better. The comparison of symmetric FlexSig with
conventional signatures is in Fig. 8.

always take advantage of all the resources of the module for
any number of threads.

Figure 9 shows the percentage of reduction in the number
of false positives in a FlexSigP implementing priorities for the
PCIN class, compared with a FlexSig system implementing a
symmetric policy. As shown in Fig. 9, for some benchmarks
the reduction in the number of false positives is significant,
achieving reductions higher than 50% in many benchmarks.
Other benchmarks (such as ‘ssca2’, ‘labyrinth’ or ‘genome’)
do not get a significant advantage from using the asymmetric
policy, so they can be executed using a symmetric allocation
algorithm. The results are usually worse when the number of
threads increases because the average signature size decreases
leading to more saturated signatures that reduce the advantage
of the asymmetry.

7.3. Evaluation for combined PCOUT and
PCIN priority classes

In this experiment, we explore the two priority classes (PCOUT
and PCIN) using the Eigen benchmark. We use two types of
transactions: the first type (ID1) is a transaction with a read set
of 30 addresses, and a write set of 2 addresses, and the second
type (ID2) has a read set of 4 addresses and a write set of one
address. Half of the threads execute transactions ID1, and the
other half execute ID2. We have two classes of asymmetry,
one because of the different size of both types of transactions
(PCOUT priority class), and the other because the read set
is much bigger than the write set in both types of transaction
(PCIN priority class).

The FlexSigP setup for this experiment is the Cf.3 in Table 2
(128 BFs of 8 bits). Furthermore, we use three priority configu-
rations. The first configuration (PCIN) uses different priorities
for the read and write signatures (as in the previous experiment),
the second configuration (PCOUT) uses different priorities

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1465

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

L. Orosa et al.

FIGURE 10. Percentage of decrease on false positives in FlexSigP
implementing priorities for PCIN priority class, for PCOUT prior-
ity class, and combining both PCIN and PCOUT priority classes,
compared with symmetric FlexSigP [26].

for different transactions depending in their IDs, and the third
configuration (PCIN + PCOUT) uses a combination of the two
previous configurations.

Figure 10 shows the results of the three different configura-
tions compared with FlexSig. It is clear that combining both kind
of priorities the results are improved significantly. For instance,
with two threads, the reduction in the number of false positives
is under 40% when PCIN or PCOUT priorities are used alone.
When both priorities are combined, the net effect is a reduction
of ∼65%.

7.4. FlexSigP with a high number of threads

In this experiment, we show that FlexSigP can scale up to a
high number of threads. The configuration Cf.4 of Table 2 is
used to simulate an environment with a maximum number of
16, 32, 64 and 128 threads (configurations (a), (b), (c) and (d),
respectively). We use the Eigen benchmark and FlexSigP
implementing the PCIN priority class.

Figure 11 shows the reduction of false positives of FlexSigP
(PCIN priority class) compared with conventional Bloom
filters for a system with a maximum of 16, 32, 64 and 128
threads. FlexSigP achieves significant reductions, specially
when the benchmarks are executed with less threads than the
maximum allowed in the system. With this experiment we
show that FlexSigP is getting worse when it runs with the max-
imum number of threads allowed in the system, but it has good
scalability, as the behavior has the same pattern with systems
up to 128 threads. The worst results are when a benchmark is
executed with the maximum number of threads in the system.
However, even in the worst case, FlexSigP clearly outperforms
conventional Bloom filters.

8. RELATED WORK

Quislant et al. [48] have proposed a new reconfigurable asym-
metric signature (ASYM) to deal with the asymmetry of the

FIGURE 11. Percentage of decrease of false positives in FlexSigP
(PCIN priority class) compared with conventional Bloom filters for
Eigen benchmark with up to 128 threads.

read and write sets in TM systems. The high-level idea is that
the ASYM signature configures the number of BFs devoted to
each data set. An ASYM signature is composed by k hash func-
tions, each one associated with a register, and a mask register
that provides a parameter (reconfigurable dynamically for each
transaction) which establishes the sizes of the read and write
signatures.

ASYM signatures comprise a more restricted scenario than
our FlexSigP, as only manages asymmetry between read and
write set in one transaction. Unlike ASYM, FlexSigP is a
shared module, which deals with many transactions and more
types of asymmetries, such as asymmetry among user trans-
actions or asymmetry among applications. Also, FlexSigP is
not intended to work only with TM, and it can be extended to
work with other applications or tools. Because of its simplicity,
ASYM does not require an allocation algorithm, and the size
of the signatures would be constant from the beginning to the
end of the transaction (in FlexSig the size can be reduced in a
running transaction). In Section 8.1 we evaluate both, and the
results show that FlexSigP achieves less false positives than
ASYM signatures.

Korgaonkar et al. [49] propose to distribute the resources
in FlexSig according to the size of the transactions. However,
they do not propose any hardware implementation, nor do
they describe the algorithm implemented in detail. In con-
trast, we propose a hardware approach of a general asymmetric
algorithm (not only for TM) with several levels of asymmetry.

Scalable Bloom Filters [50], AdaptSig [9] or Dynamic
Bloom Filters [51] propose alternatives in the same way: they
expand signatures with more resources when the false posi-
tive rate reaches a prefixed level. For example, the Scalable
Bloom Filters (SBF) are composed by one or more single
Bloom filters; when the filters reach the fill ratio, a new filter is
added to the SBF. Each successive BF is created with a tighter
maximum error probability on a geometric progression, so that

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1466

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

Asymmetric Allocation in a Shared Flexible Signature Module

FIGURE 12. Percentage of decrease of false positives in FlexSigP
implementing the PCIN priority class, compared with ASYM
signatures.

the compounded probability over the whole series converges
to some predefined value. With this method, the false positive
rate is always bounded. However, it might be very difficult to
implement these approaches in hardware, because an indefi-
nite number of resources would be needed (it depends on the
application).

The proposals in [10, 11] also use a centralized module of con-
ventional signatures in a TM system. These schemes perform
a static fixed allocation of signatures (resulting in signatures of
fixed size), and they do not propose techniques to scale or to
make them more flexible. Our FlexSigP could be used instead of
the proposed modules in both proposals for reducing the number
of false positives.

8.1. FlexSigP vs. ASYM signatures

We repeat the experiment of Section 7.2 for some benchmarks,
but this time comparing the results of FlexSigP (with PCIN
priority class) with the results of ASYM [48]. The system with
ASYM signatures is configured with 16 ASYM signatures,
each one composed by 8 BFs (each BF composed of a H3 hash
and a 64-bit register), that accumulate the same storage capac-
ity that our FlexSigP module. The detailed configuration is
described in Supplementary material [40].

Figure 12 shows the results of comparing ASYM signa-
tures with FlexSigP implementing the PCIN priority class.
The bars indicate the reduction of false positives of FlexSigP
over ASYM signatures. We can see that, for 2, 4 and 8 threads,
the reduction of false positives in FlexSigP is very significant
in comparison with ASYM signatures (up to 100%), because
ASYM signatures do not take advantage of all resources when
the number of threads is <16.

For this test, we only use a subset of the benchmarks that
better represent the advantage of ASYM signatures over con-
ventional Bloom filters. For the test used in Section 7.2 that are
not shown in Fig. 12, the better results of ASYM are obtained
with a symmetric configuration, and therefore the results for the

ASYM signatures are the same as for the conventional Bloom
filters shown in Section 7.2, that are also clearly outperformed
by FlexSigP.

9. CONCLUSION

A FlexSig module might be an efficient accelerator for multiple
applications in the multicore/manycore era. The module makes
signatures flexible and adaptable to different situations and
requirements. However, the algorithm for allocating signatures
is very simplistic. In this work, we explored more involved
techniques to allocate signatures with priorities. While the
concept is simple, the trade-off between complexity of imple-
mentation and efficiency is not straightforward and required a
careful exploration of the design space. We proposed FlexSigP,
which implements two orthogonal levels of priorities with two
possible states (high and low). We developed a high throughput
hardware allocation algorithm (the critical operation) that is
able to take advantage of priorities while keeping the hardware
overhead at reasonable levels. Specifically we performed an
extensive evaluation in the context of TM applications, achiev-
ing reductions of up to 60% in several real benchmarks when
implementing the PCIN priority class compared with FlexSig.
We also showed the advantages of combining both levels of
priorities with a synthetic benchmark. We obtained rough esti-
mates of the hardware overhead for supporting priorities, and
the throughput of the system.

The asymmetric allocation policies proposed strengthen the
case for FlexSigP as a flexible hardware accelerator to be used in
a general purpose multicore/manycore microprocessor, extend-
ing the original concept of flexibility in FlexSig with the adap-
tation to application-dependent characteristics (asymmetry).

An interesting open problem for future research in FlexSigP
is the automatic static or dynamic determination of the priorities
by incorporating information from specific hardware counters.

FUNDING

This work was supported in part by Ministry of Education
and Science of Spain, co-funded by the European Regional
Development Fund (ERDF/FEDER), under contract TIN 2010-
17541 and by Xunta de Galicia under contracts CN2012/151
and 2010/28. While performing most of this work, Lois Orosa
was with the University of Santiago de Compostela.

SUPPLEMENTARY MATERIAL

Supplementary material is available at www.comjnl.oxford
journals.org.

REFERENCES

[1] Bloom, B.H. (1970) Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13, 422–426.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1467

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021

http://www.comjnl.oxfordjournals.org
http://www.comjnl.oxfordjournals.org


�

�

�

�

�

�

�

�

L. Orosa et al.

[2] Laufer, R.P., Velloso, P.B. and Duarte, O.C.M.B. (2011) A gen-
eralized bloom filter to secure distributed network applications.
Comput. Netw., 55, 1804–1819.

[3] Donnet, B., Baynat, B. and Friedman, T. (2006) Retouched
Bloom Filters: Allowing Networked Applications to Trade Off
Selected False Positives Against False Negatives. Proc. 2006
ACM CoNEXT Conf. Article No. 13. ACM.

[4] Deng, F. and Rafiei, D. (2006) Approximately Detecting Dupli-
cates for Streaming Data using Stable Bloom Filters. Proc. 2006
ACM SIGMOD Int. Conf. Management of Data, pp. 25–36.
ACM.

[5] Fan, L., Cao, P., Almeida, J. and Broder, A.Z. (1998) Summary
Cache: A Scalable Wide-area Web Cache Sharing Protocol. ACM
SIGCOMM Computer Commun. Rev., pp. 254–265. ACM.

[6] Tarkoma, S., Rothenberg, C. and Lagerspetz, E. (2012) Theory
and practice of bloom filters for distributed systems. IEEE Com-
mun. Surv. Tutor., 14, 131–155.

[7] Wikipedia (2015) Bloom filter — wikipedia, the free encyclope-
dia. [Online].

[8] Yen, L., Bobba, J., Marty, M.R., Moore, K.E., Volos, H., Hill,
M.D., Swift, M.M. and Wood, D.A. (2007) Logtm-se: Decou-
pling Hardware Transactional Memory from Caches. Proc. 2007
IEEE 13th Int. Symp. High Performance Computer Architecture,
HPCA’07, Washington, DC, USA, pp. 261–272. IEEE Computer
Society.

[9] Peng, L., guo Xie, L., qiang Zhang, X. and yan Xie, X. (2010)
Conflict Detection via Adaptive Signature for Software Transac-
tional Memory. 2010 2nd Int. Conf. Computer Engineering and
Technology (ICCET), April, pp. V2-306–V2-310.

[10] Casper, J., Oguntebi, T., Hong, S., Bronson, N.G., Kozyrakis, C.
and Olukotun, K. (2011) Hardware acceleration of transactional
memory on commodity systems. SIGPLAN Not., 46, 27–38.

[11] Ferri, C., Marongiu, A., Lipton, B., Bahar, R.I., Moreshet,
T., Benini, L. and Herlihy, M. (2011) Soc-tm: Integrated
hw/sw Support for Transactional Memory Programming
on Embedded Mpsocs. Proc. Seventh IEEE/ACM/IFIP Int.
Conf. Hardware/Software Codesign and System Synthesis,
CODES+ISSS’11, New York, NY, USA, pp. 39–48. ACM.

[12] Choi, W. and Draper, J. (2013) Improving utilization of hardware
signatures in transactional memory. IEEE Trans. Parallel Distrib.
Syst., 24, 2230–2239.

[13] Qi, S., Otsuki, N., Nogueira, L.O., Muzahid, A. and Torrellas,
J. (2012) Pacman: Tolerating Asymmetric Data Races with
Unintrusive Hardware, pp. 1–12. Los Alamitos, CA, USA:
IEEE Computer Society.

[14] Tuck, J., Ahn, W., Ceze, L. and Torrellas, J. (2008) Softsig:
software-exposed hardware signatures for code analysis and
optimization. SIGPLAN Not., 43, 145–156.

[15] Sung, H., Komuravelli, R. and Adve, S.V. (2013) Denovond:
efficient hardware support for disciplined non-determinism.
SIGARCH Comput. Archit. News, 41, 13–26.

[16] Lin, P.-C., Lin, Y.-D., Lai, Y.-C., Zheng, Y.-J. and Lee, T.-H.
(2009) Realizing a sub-linear time string-matching algorithm
with a hardware accelerator using bloom filters. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., 17, 1008–1020.

[17] Pontarelli, S. and Ottavi, M. (2013) Error detection and correc-
tion in content addressable memories by using bloom filters.
IEEE Trans. Comput., 62, 1111–1126.

[18] Reviriego, P., Pontarelli, S., Maestro, J. and Ottavi, M. (2015) A
synergetic use of bloom filters for error detection and correction.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 23, 584–587.

[19] Lin, Y.-D., Lin, P.-C., Lai, Y.-C. and Liu, T.-Y. (2009) Hardware
software codesign for high-speed signature-based virus scanning.
IEEE Micro, pp. 1–1.

[20] Lim, H., Lim, K., Lee, N. and Park, K.-H. (2014) On adding
bloom filters to longest prefix matching algorithms. IEEE Trans.
Comput., 63, 411–423.

[21] Tripathy, A., Ieong, K.C., Patra, A. and Mahapatra, R. (2013) A
Reconfigurable Computing Architecture for Semantic Informa-
tion Filtering. 2013 IEEE Int. Conf. Big Data, pp. 212–218. IEEE.

[22] Chen, Y., Schmidt, B. and Maskell, D. (2013) Reconfigurable
accelerator for the word-matching stage of blastn. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., 21, 659–669.

[23] Liu, J., Jaiyen, B., Veras, R. and Mutlu, O. (2012) Raidr:
Retention-aware Intelligent Dram Refresh. Proc. 39th Annual
Int. Symp. Computer Architecture, ISCA’12, Washington, DC,
USA, pp. 1–12. IEEE Computer Society,

[24] Lyons, M.J. (2013) Toward a hardware accelerated future. PhD
Thesis, Harvard University.

[25] Horowitz, M. (2014) 1.1 Computing’s Energy Problem (and what
we can do about it). 2014 IEEE Int. Solid-State Circuits Conf.
Digest of Technical Papers (ISSCC), pp. 10–14. IEEE.

[26] Orosa, L., Antelo, E. and Bruguera, J.D. (2012) FlexSig: imple-
menting flexible hardware signatures. ACM Trans. Archit. Code
Optim., 8, 30:1–30:20.

[27] Herlihy, M. and Moss, J.E.B. (1993) Transactional Memory:
Architectural Support for Lock-free Data Structures. Proc. 20th
Annual Int. Symp. Computer Architecture, ISCA’93, New York,
NY, USA, pp. 289–300. ACM.

[28] Haring, R., Ohmacht, M., Fox, T., Gschwind, M., Satterfield, D.,
Sugavanam, K., Coteus, P., Heidelberger, P., Blumrich, M., Wis-
niewski, R., Gara, A., Chiu, G., Boyle, P., Chist, N. and Kim,
C. (2012) The IBM blue gene/Q compute chip. IEEE Micro, 32,
48–60.

[29] Advanced Micro Devices (2009) Advanced synchronization
facility – proposed architectural specification Inc., 2.1 edition.

[30] Hammarlund, P., Martinez, A., Bajwa, A., Hill, D., Hallnor,
E., Jiang, H., Dixon, M., Derr, M., Hunsaker, M., Kumar, R.,
Osborne, R., Rajwar, R., Singhal, R., D’Sa, R., Chappell, R.,
Kaushik, S., Chennupaty, S., Jourdan, S., Gunther, S., Piazza, T.
and Burton, T. (2014) Haswell: the fourth-generation intel core
processor. IEEE Micro, 34, 6–20.

[31] Calciu, I., Gottschlich, J., Shpeisman, T., Pokam, G. and Herlihy,
M. (2014) Invyswell: A Hybrid Transactional Memory for
Haswell’s Restricted Transactional Memory. Proc. 23rd Int.
Conf. Parallel Architectures and Compilation, pp. 187–200.
ACM.

[32] Chang, F., Feng, W.-C. and Li, K. (2004) Approximate Caches
for Packet Classification. Twenty-third AnnualJoint Conf. IEEE
Computer and Communications Societies, INFOCOM 2004, pp.
2196–2207. IEEE.

[33] Cui, Y., Wang, Y., Chen, Y. and Shi, Y. (2013) Lock-contention-
aware scheduler: a scalable and energy-efficient method for
addressing scalability collapse on multicore systems. ACM
Trans. Archit. Code Optim., 9, 44:1–44:25.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1468

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021



�

�

�

�

�

�

�

�

Asymmetric Allocation in a Shared Flexible Signature Module

[34] Johnson, F.R., Stoica, R., Ailamaki, A. and Mowry, T.C. (2010)
Decoupling Contention Management from Scheduling. Proc.
15th Edition of ASPLOS on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XV , New
York, NY, USA, pp. 117–128. ACM.

[35] Shavit, N. and Touitou, D. (1995) Software Transactional Mem-
ory. Proc. 14th Annual ACM Symp. Principles of Distributed
Computing, PODC’95, New York, NY, USA, pp. 204–213.
ACM.

[36] Shriraman, A., Dwarkadas, S. and Scott, M.L. (2008) Flexible
Decoupled Transactional Memory Support. Proc. 35th Annual
Int. Symp. Computer Architecture, ISCA’08, pp. 139–150.

[37] Yen, L. (2009) Signatures in transactional memory systems. PhD
Thesis.

[38] Cao Minh, C., Chung, J., Kozyrakis, and Olukotun, K. (2008)
STAMP: Stanford Transactional Applications for Multi-
processing. IISWC’08: Proc. IEEE Int. Symp. Workload Char-
acterization, September.

[39] Quislant, R., Gutierrez, E., Plata, O. and Zapata, E. (2013) Ls-
sig: locality-sensitive signatures for transactional memory. IEEE
Trans. Comput., 62, 322–335.

[40] Orosa, L., Bruguera, J.D. and Antelo, E. (2016) Supplemental
material to asymmetric allocation in a flexible signature module
for multicore processors. www.comjnl.oxfordjournals.org.

[41] Vazquez, A. and Antelo, E. (2012) Area and Delay Evaluation
Model for CMOS Circuits. Technical Report. http://www.
ac.usc.es/node/1607.

[42] Cui, Y., Wang, Y., Chen, Y. and Shi, Y. (2014) Mitigating resource
contention on multicore systems via scheduling. Comput. J., 57,
1178–1194.

[43] Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M.,
Barton, C., Silvera, R. and Michael, M. (2012) Evaluation of

Blue gene/q Hardware Support for Transactional Memories.
Proc. 21st Int. Conf. Parallel Architectures and Compilation
Techniques, PACT’12, New York, NY, USA, pp. 127–136.
ACM.

[44] Stuecheli, J. (2013) Next generation power microprocessor. Hot
Chips.

[45] Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisen-
stat, D., Scherer III, W.N. and Scott, M.L. (2006) Lowering
the overhead of nonblocking software transactional memory.
Proc. 1st ACM SIGPLAN, Workshop on Languages, Com-
pilers, and Hardware Support for Transactional Computing
(TRANSACT’06).

[46] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney,
G., Wallace, S., Reddi, V.J. and Hazelwood, K. (2005) Pin: Build-
ing customized program analysis tools with dynamic instrumen-
tation. SIGPLAN Not., 40, 190–200.

[47] Hong, S., Oguntebi, T., Casper, J., Bronson, N., Kozyrakis, C. and
Olukotun, K. (2010) Eigenbench: A Simple Exploration Tool for
Orthogonal tm Characteristics. 2010 IEEE Int. Symp. Workload
Characterization (IISWC), pp. 1–11. IEEE.

[48] Quislant, R., Gutierrez, E., Plata, O. and Zapata, E. (2013)
Hardware signature designs to deal with asymmetry in trans-
actional data sets. IEEE Trans. Parallel Distrib. Syst., 24,
506–519.

[49] Korgaonkar, K., Garimella, K. and Veezhinathan, K. (2012) Size-
proportional signature sharing for transactional memory systems.
FASPP Workshop.

[50] Almeida, P., Baquero, C., Preguica, N. and Hutchison, D. (2007)
Scalable Bloom filters. Inf. Process. Lett., 101, 255–261.

[51] Guo, D., Wu, J., Chen, H., Yuan, Y. and Luo, X. (2010) The
dynamic bloom filters. IEEE Trans. Knowl. Data Eng., 22,
120–133.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

1469

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1453/2420649 by ETH
 Zürich user on 29 M

ay 2021

http://www.comjnl.oxfordjournals.org
http://www.ac.usc.es/node/1607
http://www.ac.usc.es/node/1607

	1 Introduction
	2 Hardware Signatures
	3 Flexible Hardware Signatures
	4 Asymmetric Allocation Policies
	4.1 High-level asymmetric allocation algorithm with two priority classes
	4.2 Example: asymmetric algorithms applied to TM
	4.3 Priority assignment

	5 Hardware Implementation For TM
	5.1 Basic elements
	5.2 Allocation algorithm implementation: arithmetic calculations
	5.3 Control logic
	5.4 Hardware cost and latency

	6 System Issues
	7 Evaluation for a TM System
	7.1 Experimental setup
	7.2 Evaluation for the PCIN priority class
	7.3 Evaluation for combined PCOUT and PCIN priority classes
	7.4 FlexSigP with a high number of threads

	8 Related Work
	8.1 FlexSigP vs. ASYM signatures

	9 Conclusion

